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Abstract:  
Studying the history of mathematics you can recognize that tools have always fundamentally 
influenced the development of mathematics. The computer, a child of mathematical thinking, has 
changed the several roles of mathematics as well as the ways of teaching and learning mathematics. 
 
In my lecture I will formulate my thesis concerning the influence of technology by using three roles 
which mathematics can have: 
 

 Mathematics – a “two phase” process: the abstract phase and the concrete phase 
 Mathematics – a language 
 Mathematics – a thinking technology 

 
Using these three roles of mathematics I will give concrete examples for some of the changes caused 
by the use of technology: 
 

- A more pupil centred, experimental way of learning with a shift of emphasis from operating to 
modelling and interpreting. 

- Technology supports both phases of mathematical activity – the abstract and the concrete 
phase. 

- The use of technology allows the students to create new language elements. 
- The use of technology not only supports cognition – it becomes part of cognition. 
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1. A short journey in the history of mathematics 
 
A driving force behind the advancement of civilisation has always been the desire to 
overcome problems of daily life with the help of technical aids. 
 
Watching the history of mathematics you can recognize that calculation tools had always 
influenced the development of mathematics. 
 
Long before our current algorithms for written calculation 
were invented mathematicians used calculation boards called 
abacus. The name “abacus” can be derived from the Greek 
word “abakion” which means “round board”. One of the first 
calculation boards coming from the 4th century before Christ 
was found on the isle of Salamis. The first written document 
about calculating with the abacus comes from Gerbert who 
became pope in 999 and was called pope Silvester II. The first 
picture shows this evolution: The first step was the use of the 
calculation board, the second one calculating by using written 
numbers [Kaiser; Nöbauer 1984; pp 29-43]. 

 
 

Fig 1.1 
 
The invention of the first calculation machines: The first machine was built by Wilhelm 
Schickhardts, professor for biblical languages at the University of Thüringen in 1623. A 
sketch of the machine was found in a letter to Johann Kepler (Fig. 1.2). The machine could 
realize the arithmetical operations automatically. A reconstruction of the machine can be seen  
at the University of Linz. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 1.2            Fig. 1.3 
 
The  central component was the decadal “counting wheel” (Fig. 1.3) 
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A fundamental change in the roles of 
mathematics and a prerequisite for the growing 
use of mathematical methods in new areas was 
the invention of computers. Konrad Zuse in 
Germany and Howard Aiken in the US built the 
first prototypes in 1941 (Fig. 1.4) and 1943. 
 
 
 
 
 

 
 

Fig. 1.4 
The computer – a child of mathematical thinking – has influenced the role of mathematics and 
especially mathematics teaching more than all the other tools   in previous history. 
 
The topic of my lecture can only be to give some examples of changes caused by the computer. 
 
2. Roles of mathematics and consequences for mathematics 

education 
 
This lecture is a tribute to my most important teacher Bruno Buchberger. He is not only an 
excellent mathematics scientist, he developed the theoretical basis for the computer algebra 
and the emphasis of his recent work is “artificial reasoning”. More interesting for my work is 
the second side of Buchbergers research: By watching the way of a mathematician into the 
world of mathematics and by watching the student´s learning process he also formulated 
didactical concepts and principles. 
 
These didactical ideas confirm the thesis of Jean Piaget that the genesis of knowledge in the 
sciences and in the individual follows the same mechanisms [Wittmann, 1981, S.59].  This 
recognition leads to an extremely dynamic model for the learning of mathematics. 
 
The task of our organisation ACDCA is to observe the students in technology supported 
classes and to develop and to test new ways of teaching and learning in a technology 
supported learning environment. 
 
Some of Buchbergers thesis which he presented at the last ACDCA conference “visit-me 
2002” in Vienna [Buchberger, 2002]: 
 

• The goal of mathematics is automation. 
• The goal of mathematics is to trivialize mathematics. 
• The goal of mathematics is explanation (= making things  of high dimension plain = 

making complicated things simple). 
• Mathematics is didactics. 
• The process of trivialization is completely non-trivial. 
• Think nontrivially once and act trivially infinitely often. 

 
These thesis – especially the sentence. “mathematics is didactics” can be used as guidelines 
for developing didactical principles, as well as for developing a curriculum. They are also  
fundamental ideas for our ways of using technology in mathematics education. 
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Another approach to the discussion of several roles of mathematics comes from Roland 
Fischer, Professor at the University of Klagenfurt, the main topics of his recent research are 
“Human beings and Mathematics “ and  “Society and Mathematics”. The topic of his last 
lecture in Vienna was “The significance and usability value of mathematics” [Fischer, 2004]. 
For the sociologist H. Tenbruck, whom Fischer quoted in his article, the progress of science is 
a process of trivialising. He distinguishes between the significance and the usability value of a 
science, especially of mathematics. At the beginning of a mathematical process the 
significance is rather high and there is normally no usability value. The process of trivializing 
causes a decreasing significance (or value of knowledge as Fischer says) and an increasing 
usability value.  

 

 

 

                         

                           Fig. 2.1 

A characteristic of mathematics is that the group of people who can recognize the significance 
or better the value of knowledge of mathematics is rather small. 
 
My point of view differs from Fischer and Tenbruck in two points: 
 
1. I don´t agree that during the process of trivializing the significance or the value of 
knowledge is decreasing. What is decreasing during this process of trivializing is the degree 
of consciousness of the value of knowledge. When driving a car it is not important to think 
about how the engine works – the degree of consciousness is low but not the significance. 
 
2. The development of mathematics must be seen as a process happening in different phases. 
A possible model is a “two phase model” consisting of:  

• the phase of abstracting and 
• the phase of concretising 

 
The “two phase concept” of mathematics 

The phase of abstracting: 
Starting with a concrete problem a new 
theory, a new algorithm, new concepts 
have to be found. For this purpose it is 
necessary to detach from the concrete 
problem, to develop theories and 
algorithms in the abstract phase. 
 
The phase of concretising: 
It is exactly this process of detaching, of 
abstracting which opens the opportunity 
of a many-sided use of this mathematical 
area. 
 
Figure 2.2 
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At the beginning in the first concrete phase the value of knowledge (or the value of 
recognition) as well as the value of usability are rather low. 
 
Not until the abstract phase the value of knowledge does increase and reaches its maximum at 
the end of this phase. At this point the mathematical actors should also have the highest 
degree of consciousness. Learners may recognize that for the process of trivializing a non 
trivial mathematics is necessary. The value of usability remains low. 
  
The abstract phase is the starting point for the second – important – phase of concretising. We 
can say: The power of mathematics is the power of concretising 
 
In this phase of concretising not the significance is decreasing for me but the degree of 
consciousness of the mathematics which is behind the algorithms used to solve concrete 
problems. The significance is not decreasing rather it is represented in the high value of 
usability in the concrete phase.  
 
Two examples: 

Example 2.1: The derivative of a function 
• Concrete problem 1: Slope of the secant line  slope of the tangent 
• Abstract phase: We have to detach from the tangent problem and to 

concentrate on the first derivative as the limit of the quotient of differences as 
x approaches zero. I am always disappointed if I ask a student: “What is the 

first derivative of a function?” and he answers “it is the slope of the tangent”. 
Such a student did not experience the abstract phase of the mathematical 
learning process. 

• This abstract phase opens the many sided use of the differential calculus 
 
Example 2.2: Integral calculus 

• Concrete problem 1: The area between a curve and the x-axis 
• Abstract phase: It is better to detach from the concept of area and to 

concentrate on limit of sums, to concentrate on the fundamental theorem of 
calculus, on the concept of measure a.s.o. Again: 

• This abstract phase opens the many sided use of the integral calculus 
 
 
The picture tries to show the power of the 
integral. Several problems are related 
because of the common mathematical model. 
Therefore I always say to my students: The 
education in calculus starts in the fifth grade 
when students discover the area of a 
rectangle. 
 
 
 
 
 

figure 2.3 
 
The influence of technology in this 2-phase model of mathematics 
 
The twentieth century is characterized by an enormous growth of the usability value: 
Mathematics has permeated nearly all our ways of living and working. Mathematising of 
many sciences like Psychology, National Economy, Biology, Chemistry a.s.o. shows this 
growing usability value. The computer plays a central role in this process. Computer 
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supported mathematics allows us to develop more and more precise models of reality. On the 
other hand  by using the mathematical logic we can build these technological tools and by 
using the theory of formal languages we are able to develop programming languages which 
are the prerequisite for more and better models. 
 
2.1 The influence of technology in the phase of abstracting: 
 
Thesis 2.1: 

Technology like coputeralgebra systems (CAS) help to increase the value of 
knowledge and the degree of consciousness of the learners. 

 
Example 2.3: Calculate the definite integral       using the definition of the definite 

integral e.g. use the idea of „midsums“. 
 

In the traditional math education we often observe, 
especially in calculus, the lack of the abstract phase and 
the unreflective usage of Black Boxes. All students know, 
for example, that the indefinite integral of x5 is x6/6 but 
only a  few have some knowledge about Riemann sums. 
One explanation is that only a  few of these Riemann sums 
can be calculated by the students themselves.  It is 
difficult to simplify the expressions and very difficult to 
calculate the necessary limits 
 
 
 
 
 
 
 
 

figure 2.4 
 
Using a CAS opens new possibilties: Modelling - that means finding the formula of the sum,  
- is done by the students, operating is done by the computer. But we hope that the students 
before experience a White Box phase dealing with limits of sums. Therefore we created an 
important didactical principle ,  the White Box/ Black Box Principle as a guideline for 
computer supported teaching and learning 
 
After dividing the intervall [a,b] into n equal parts and calculating the mid points ξ(i) the 

function values f(ξ (i)) have to be computed (figure 2.5). Thus far the the operation could also 
be done by hand. But the sum normally cannot be calculated by a high school student as you 
can see in figure 2.4. Anyway this complex calculation is not so important for the 
understanding of the integral concept. Using the TI-92 the sum is available very quickly and 
also the limit of the sum (figure 2.6 and 2.7). The expected result is b3/3 - a3/3. 
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figure 2.5     figure 2.6 

 
figure 2.7 
 
2.2 The influence of technology in the phase of concretising 
 
In an Austrian daily newspaper the author of a commentary, entitled „Environment instead of 
math“, demanded that math lessons be abolished and more important topics, such as 
environmental protection, take their place in the curriculum. There is one reproach in the 
article that we should take seriously: The author writes: „I experienced math as time wasted in 
senseless mental gymnastics“. 
 
Thesis 2.2: 

The computer  caused an enormous growth of the usability value of mathematics. The 
powerful calculation competence, the possibility of simulating, building complex 
models by programming, visualizing a.s.o. open a large number of new concrete 
applications. This possibility has also changed the technology supported math 
education. We can offer to the students a more application oriented, a more interesting, 
a more meaningful mathmematics. 

 
The time of the lecture is too short to give enough examples for the technology supported 
concrete phase and I think a lot of the lectures of this conference will deal with these 
possibilities. One possibility is to visit the homepage of ACDCA: www.acdca.ac.at. Therefore 
I will concentrate on some reasons for the influence of the computer in the concrete phase:  
 
Some reasons: 

• More complex and also new models are available. 
• Complex operations could be done by the CAS. 
• Several representations of results lighten the interpretation of the given problem. 
• Mathematics could become a „service subject“ for other subjects and thus support cross 

curriculum teaching. 
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Dangers caused by the use of technology 
 
But the use of technology also causes a lot of dangers, one of which I will express in my  
 
Thesis 2.3: 

Mathematics is not only mathematising 
 
This dangerous definition “Mathematics  Mathematising” I heard in a lecture concerning 
the role of constructivism in mathematics education and I also observe this interpretation in 
classrooms where technology is used. 
Theoretically, CAS, if used as a Black Box, would offer the possibility of doing mathematics 
without mastering algorithms. The pupil could form assumptions in the heuristic phase, skip over 
the abstract phase, over the corroboration of algorithms and the practicing of calculating skills 
and then using the CAS as a Black Box immediately turn to the applications. 
 

If mathematising means this way of 
doing mathematics, forgetting the 
abstract phase, forgetting the necessity 
of developing and mastering 
algorithms, then in my opinion it is a 
dangerous definition of  mathematics. 
 
This way of mathematics education 
disregards the NCTM-principles 
concerning “Learning the Basics” and 
also the standard “Reasoning and 
Proof” where you can read: “Students 
should recognize reasoning and proof 
as fundamental aspects of 
mathematics” 
 

figure 2.8 
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3. Mathematics as a language 
 
In a German curriculum can be read 

Students should learn three sorts of languages: 
• the mother tongue  
• foreign languages and 
• the language of mathematics 

 
Observing the evolution of natural sciences in the twentieth century we can acknowledge that  

“The book of nature is written in the language of mathematics” 
 
Mathematics is a language and like other languages it has its own grammar, syntax, vocabulary, word 
order, synonyms, conventions, a.s.o. [Esty, 1997].  This language is both a means of communication 
and an instrument of thought. 
 
One main goal of the learning of mathematics is to have the students assimilate  the basic 
concepts and language skills which are fundamental to mathematics. Mathematical language 
skills include the abilities to read with comprehension, to express mathematical thoughts 
clearly, to reason logically, to recognize and employ common patterns of mathematical 
thought. [Esty, W., 1997, preface] 
 
Unique among languages is its ability to provide precise expressions for nearly every thought 
or concept that can be formulated in its terms. The power of the modern mathematical 
language may be seen in the following two examples: On the one hand the original 
formulation of theorems of ancient Greek mathematicians and on the other hand their 
equivalents in modern math language: [http:www.cut-the-knot.org/language/index.shtml] 
 

Ancient mathematical language 
closer to the native language 

Modern language of mathematics 

If a straight line be cut at random, the square on 
the whole is equal to the squares on the segments 
and twice the rectangle contained by the segments. 
(Euclid, Elements, II.4, 300B.C.)  

 
 

(a+b)2 = a2 + b2 + 2.a.b 

The area of any circle is equal to a right-
angled triangle in which one of the sides 
about the right angle is equal to the radius, 
and the other to the circumference of the 
circle. 
(Archimedes, On the Sphere and the 
Cylinder, 220B.C.) 

 
 
 

A = r.2πr/2 = r2π 

figure 3.1 
  
These examples and our investigations in the classroom corroborate again J. Piagets Thesis 
that the genesis of knowledge in the sciences and in the individual follows the same 
mechanisms. Also students during their way into  mathematics acquire more and more new 
language elements and necessary rules for using the language of mathematics for problem 
solving. 
 
On the other hand it is a bad didactical mistake starting too early with ten year old children 
using the pure modern mathematical language. When I visited math lessons and looked at the  
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pupils´ exercise books my first question to the teacher was: where can I find the native 
language. 
 
The evolution of the language of mathematics follows as a translation process form the native 
language to the mathematical language and back. 
 
Teachers support this process by using tools coming from language lessons e.g.  using a 
“vocabulary” 
 

English Mathematik 
“so you get” 
 
“3-times of” 
 
“p% von” 
 
“increase by p percent” 

= 
 

• 3 
 

• p/100 
 

• (1+p/100) 
figure 3.2 
 
If we maintain that the main role of mathematics is problem solving, consisting of the 
activities modelling – operating – interpreting, then a  main goal of mathematics learning is 
the translation process from a problem formulated in the native language to a 
mathematical model written in the language of mathematics. 
 
The translation process from the  student´s language into the language of mathematics mostly 
takes place in three stages: 

The more difficult step for the 
students is the first one: 
Compressing the text - finding the 
main linguistic parts which have to 
be translated – finding a so called 
“word formula” still expressed in the 
colloquial language but suitable for a 
direct translation. 
 
 
 
 
 
 
 

figure 3.3 
 
 
The influence of technology in the language of mathematics: 
 
Although being a child of mathematical thinking, computers of the first period needed their 
own language and it was difficult to use them in mathematics lessons. Besides they  were only 
able to use numerical methods, a fact that also changed the science landscape: numerical 
mathematics was dominating. 
 

Stage 1: A problem:
e.g.: a text in the colloquial language

Translation phase 1:
„compressing the text“

Stage 2: A „word formula“

Stage 3: A symbolic object
of the mathematical language e.g. a formula

Translation phase 2:
translating into the
mathematical language
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The translation process in this area at the end of the  70ies   and the beginning of the  80ies last 
century was more complicated when using a computer: Two translation acts were necessary: 
The translation from the colloquial language  into the language of mathematics and afterwards 
the translation into the language of the computer. This additional translation process and the 
need of an additional language was the reason that computers were rarely used in mathematics 
education. 
 
A decisive step in the evolution of technology was the development of computer algebra 
systems (CAS). I started my first classroom experiment with a CAS in 1986 using a HP28C 
calculator in a 10th grade. It was a fascinating experiment and the starting point of my 
research activity in this field but my students had still also to learn the language of the 
calculator 
 
With the further development of powerful software systems like Derive, computers more and 
more learned to understand the language of mathematics: This was the key to a widespread 
use of technology in schools: Computers understood the language which the students used in 
their exercise books and they were not only able to use the algorithms which the students 
needed, they offered a lot of new algorithms and new sorts of presentations: 
 
3.1 The translation process 
 
Thesis 3.1: 

Technology supports the translation process from the native language into the 
language of mathematics 

 
• Technology, especially CAS allows the students to transform the word formula directly 

into a symbolic object of the mathematical language  by defining variables, terms or 
functions or writing programs. 

• The CAS allows a greater variety of prototypes of a formula and also offers some which 
were not available before. While in traditional mathematics education often only one 
prototype is available and used, now the CAS offers several prototypes parallely. 

• The CAS offers and allows a greater variety of testing strategies, in this case testing if the 
formula is suitable for the problem and mathematically correct. 

 
Example 3.1: A financial problem 

One takes out a loan of K=$ 100.000,- and pays in yearly instalments of R=$ 15.000,-. 
The rate of interest is p=9%. After how many years has he paid off his debts? 

 
In traditional mathematics education such problems could be solved for the first time in 10th 
grade, because the students need geometric series and calculating skills with logarithms. The 
computer offers a new model, the recursive model. From that pupils now work such problems 
in 7th grade  
 
The first step is finding a word formula, which describes what happens every year: 

Interest is charged on the principal K, the instalment R is deducted. 
 
Translated into the language of mathematics: 

Knew = Kold*(1+p/100) - R 
After finding a formula in the phase of modelling, operating is the next activity. Using a CAS 
calculating takes on a new meaning. The Voyage  (TI 92, TI 89, …) offers a special way to 
come to a better understanding of a recursive ( or better an iterative) process: The activities of 
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storing and recalling make the pupils conscious of the two important steps of a recursive 
process: Processing the function and feedback (Knew => Kold) (figure 3.4 entry line). Looking at 
the list of values the quality of an exponential growth becomes much clearer than by 
calculating with logarithms. The typical problem of paying in instalments can be recognized: 
During the first phase the loan is nearly equal because the greatest part of the instalment is 
used for the interest (figure 3.5). The experimental solution is obtained by repeated usage of the 
enter-key until the first negative value appears (figure 3.6). The variable n shows the number of 
the years. 
 

 
figure 3.4     figure 3.5 
 

 
figure 3.6 
 
In this learning phase the pupils should explore the fundamental idea of a recursive process by 
experimenting and working step by step. We call such a phase White Box Phase, a phase of 
cognitive learning. 
By using the Sequence Mode in the next learning phase - the Black Box Phase – a new 
prototype of the formula is available (figure 3.7). The learners can easily experiment with 
several rates of interest and installments. Simulating is done by the CAS. The students have to 
find a suitable model and to interpret the results, either the table or the graph (figure 3.8 and 3.9). 
 

 
figure 3.7      figure 3.8 
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figure 3.9 
 
Thesis 3.2: 

Technology offers new language elements and allows the students to create their own 
new language elements 

 
3.2 New language elements offered by the technology: 
 
Starting a CAS and looking at the menu shows us the great variety of new language elements 
which the tool offers to the user: The possibilities extend from expand and factor in the 
Algebra menu to language elements for solving differential equations. 
 
The development of the mathematical language of the learners by gaining these new language 
elements means a chance and also a danger: 
 
The new elements are dangerous if they are only black boxes, if students have only learned to 
press certain buttons like Skinners` animals. 
 
Although not every language element offered by the computer can become a white box for the 
learner the possibility  of the technology to expand the mathematical language is a chance if 
students acquire the important and fundamental language elements by exploring and 
developing the algorithms which stand behind these commands in a white box phase of 
learning before using them as black boxes in a problem solving process. 
 
Some didactical comments to the “White Box/ Black Box Principal” which describes the  
corresponding learning activity: 
 
The White Box Phase: the phase of cognitive learning 
 

The student should be led to a mathematical concept, an algorithm or to a 
mathematical theory. The skills developed in this phase should be carried out by hand, 
in other words, also trained without the use of the computer. Basic skills should be 
automatized by practicing.  
 
The computer should only be used as a Black Box for those contents which the student 
has explored in earlier White Box phases or as a didactic tool to support the 
investigation of a new White Box. 
 
Possible activities in the White Box Phase: 
• Formulating a problem: finding a conjecture; developing a concept; development of 

an algorithm; proving. 
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• Calculating numerous examples without CAS; experimental learning with the 
support of the computer; CAS supported usage of Black Boxes which were 
explored in earlier White Boxes 

• Discussion of the solutions, the limitations and the possibilities of generalizing; 
independent development of modules which can be later used in the Black Box 
Phase as Black Boxes. 

 
 
The Black Box Phase: the phase of knowledgeable application 
 

The student should now be in the position to use the algorithms and concepts 
developed in the White Box Phase to solve practical problems or to use these in 
further White Box Phases. The computer is used as a Black Box to process the actual 
algorithms . The student must decide what to do, explain his decisions, but need not 
carry out the calculations himself.  

  
 
New language elements created by the students: 
 
By storing, defining functions or writing programs students can develop their own new 
language elements. I will go into this topic in the chapter 4.3 “modular thinking and working” 
in more detail. 
 
Now I will give only one example: One weak point of the TI-89 and TI-92 or Voyage 
promotes and strengthens the use of modules as new language elements: the small screen. 
More complex expressions cannot be totally seen on the screen and therefore operations with 
such expressions become confusing. So the structure of such operations is more 
comprehensible and clearer if students use the name of the expressions instead of the 
expressions themselves. 
 
Example 3.2: Discovering algorithms like substitution method, Gauss algorithm a.s.o. 
 
Step 1: In traditional math education students have to work „in the equations“. They 

have to do the calculating  themselves: 
 
 (I)  3.x - 2.y = 12 ⏐+2.y 
 (II) 7.x + 2.y =  8           
 (I)  3.x = 12 + 2.y ⏐:3 
 (II) 7.x + 2.y =  8 
 (I)  x = (12 + 2.y)/3 
 (II) 7.(12 + 2.y)/3 + 2.y = 8 ⏐.3 

 (II) 84 + 14.y + 6.y = 24 ⏐-84 

 (II) 20.y = -60 ⏐:20 
 (II) y = -3 
 a.s.o. 
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Step 2: Using CAS students can work „with the equations“. Calculating, substituting and 
using algorithms to solve the single linear equations, which they learned in former 
White Box phases, is now done by the computer as a Black Box. Students have to 
decide on the operations, the CAS have to do them (figure 3.9). 

 

 
figure 3.10 
 
Linear systems of equations in ninth grade 
 
Step 3: In our project where we observe students who are familiar with the CAS we found 

out that the operations are not carried out with the equations but „with the names 
of the equations“ which the students had defined as new elements of the 
mathematical language.  

 
Using the idea of the Gauss algorithm to find out the Cramer rule. 
 
Phase 1: Students have to speak about strategies to remove one variable in their colloquial 

language. E.g.: „We have to multiply the first equation with a22 and the second 
equation with -a12 and have to add the two equations. After that we have to solve 
the new equation for the variable x1 and so on.“ 

 
Phase 2: Using the CAS these two steps can be connected closely. After storing the first 

equation in the variable equ1 and the second equation in the variable equ2 the 
activities expressed in the word formula of phase 1 can now be carried out by 
using the CAS. 

 
At first for a better understanding of the several calculating steps it would be better to separate 
the particular steps: 
 

Word formula Language of Mathematics 
 
Multiply the first equation with a22 and the second equation 
with -a12 and add the two equations. 
 

 
a22.equ1 + (-a12).equ2 
 

 
Store the new equation with respect to the variable x1 in the 
variable equ2n 
 

 
a22.equ1 + (-a12).equ2 => 
equ2n 
 

 
solve the new equation for the variable x1 
 

 
solve(equ2n, x1) 
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Students having more experience with using CAS and especially the more talented students 
more and more prefer to translate the word formula of phase 1 into one abstract expression: 
 
 
Multiply the first equation with a22 and the second equation 
with -a12 and add the two equations. Now solve the new 
equation for the variable x1 
 

 
solve(a22.equ1 - a12.equ2, x1)

 

 
figure 3.11      figure 3.12 
 
This result shows a new quality of mathematical thinking caused by CAS: 
 
Thesis 3.3: 

The tool of CAS do not only support cognition, they become part of cognition. 
 
 
4. Mathematics – a thinking technology 
 
One of my students whom I met ten years later – she studied medicine – said:  
“I have forgotten all I have learned in your math lessons, I am not able to calculate with 
vectors, to solve differential equations a.s.o. – but the way of argumenting, the way of 
thinking logically, the necessity at first to define a concept or to describe it before using it are 
competences which are also very useful in my medicine studies.” 
 
I answered: I am very content – I did not expect you to be thinking about integrals while you 
are operating me. 
 

“mathematical thinking technology is the essence of science  and the 
essence of a technology based society” (Buchberger) 

 
Teachers who read our curriculum start (and end) reading at the contents (Algebra, Analysis, 
Stochastics …), they forget to read the main part: The educational mission of the subject. 
There they would find out that 

the thinking technology which is necessary when doing mathematics, independent 
from special contents, is the main contribution  to the general education  in our 
society. 

We must not say: “Our students have to learn integrals!” – we have to argue: “What thinking 
technology students are gaining when learning integrals”. 
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Thinking technology can also be acquired in other subjects but mathematics needs special 
ways of thinking. To describe these ways we can use Buchbergers “creativity spiral” as a 
model of the learners way into the mathematics [Buchberger, 1992]. 
 
The spiral begins with observations, data material or problems, the solution of which can be 
found in the development of algorithms or in the creation of new concepts. 
 
Through analysing, experimenting or generally through heuristic strategies, assumptions are 
found, sentences formed and initial ideas of proof  are thought. 
 
By proving and substantiating, in other words, by exactifying, one enters into the next stage of 
the spiral: Theorems and sentences which can now be assumed to be correct. 
 
Thus, supported by acquired knowledge, one proceeds to develop those algorithms or programs 
which are necessary for  problem solving. Testing of and consolidating the developed algorithms 
by practicing is an integral part of this stage. 
 
The actual part of the spiral ends with the next step. The insight and strategies are now used to 
solve the initial problems or related problems. 
 
When new problems evolve and new additional knowledge is necessary or new algorithms need 
to be developed, then the stages of the spiral are repeated once again. 
 
When experiencing a loop in the Creativity Spiral one can distinguish  three important phases 
of activity in the learning process [Heugl, a. o., 1996], whereby it is not always possible to draw a 
sharp line among them: 
 
Phase 1: The heuristic, experimental phase 

Developing conjectures, forming hypotheses, devising proving ideas and problem 
solving strategies, developing naive, elementary conceptions. The characteristic 
brain activities of this phase are: Plausible, inductive conclusions 

 
Phase 2: The exactifying phase 

Corroborating assumptions, proving hypotheses, programming (including testing) 
exactifying concepts. 
• The exactifying phase serves to school exact and critical thinking and 

supports the ability to formal logical conclusions. 
• The pupil should become acquainted with the manner of  working in the field 

of mathematics and become trained in proving. 
• Furthermore, the ability of reasoning should be educated. 

 
 
Phase 3: The application phase 

Solving problems by applying the concepts and algorithms developed in phases 1 
and 2: modeling, operating and interpreting. 
If we consider thinking technology as the central goal of mathematics education it 
is not enough to offer a few chosen applications  but rather to develop a general 
qualification  of application, in other words a reflection on the process of 
application itself [Fischer, 1985, p85ff] 
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The influence of technology in the thinking technology 
 
In a memorable lecture at a congress at the University of Klagenfurt in 1991 Prof. Willi 
Dörfler formulated this thesis concerning the influence of technology in mathematics [Dörfler, 
1991]: 
 

• If we understand cognition as a functional system which encompasses man and 
tools and the further material and social context, then new tools can change 
cognition qualitively and generate new competences. Learning is then not 
simply the development of existing competences but rather a systematical 
construction of functional cognitive systems 

• The computer and computer software must therefore be seen as an expansion 
and a strengthening of cognition. 

• There is a shift in activities from doing to planning and interpreting. 
• The thought process develops advantageously using concrete representations 

or models of the given problem. Good software systems offer a number of 
graphic and symbolic elements, enabling the user to construct various 
cognitive models on the screen. 

• The computer as a medium of prototypes: General concepts are made 
cognitively available by prototypical representation. The computer offers not 
only a larger variety of prototypes, but rather, and more importantly, those 
which would not be available without the computer. 

• Modulation of thought: The computer can be used for storage and for 
processing of many various modules and therefore supports modular thinking 
and working. 

 
 
Some examples for computer supported heuristic strategies 

which do not only support cognition. Watching our student´s behaviour we can say 
these heuristic strategies become part of their cognition. 

 
1. Experimenting 

The student looks for assumptions by systematic trial. An assumed model is tested, 
accepted as usable, improved or discarded. In the next step either the learner operates 
with the tested model or he develops a better model. Testing means checking whether 
the model fulfills the given requirements and whether it is applicable for larger given 
requirements. 

 
2. Proceeding step by step 

The CAS offer results directly, often without any provisional results. The pupil should 
try to follow the results presented by CAS by following the path step by step („many 
things the computer can do as a black box, I can do too“). 

 
3. Visualising 

A special quality of mathematics is the possibility of graphic representation of abstract 
facts. Apart from free hand drawings, it is difficult to develop graphs without using a 
computer. Finding the most important points and characteristics of functions in order 
to be able to draw the graph is the main goal of the discussion of curves in analysis. 
CAS allow us to draw the graph faster and more directly than the data that is supplied 
by the curve discussion. Visualising is one of the most interesting contributions of 
CAS towards a better comprehension of abstract problems. In addition, when 
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observing pupils working with CAS we have found that especially in group or partner 
work, the visual communication is an important prerequisite and support of spoken 
and written communication. 

 
4. Zooming 

The possibility of scaling down or enlarging graphs as well as being able to move the 
cursor along a graph, are two additional enrichments when visualising. 

 
5. Simulating 

The computer enlarges the definition of what is a solution. Until now, a problem was 
considered to be solved when the pupil could find certain numbers or an algebraic 
protoype of the solution such as a term or an equation. Now, however, the simulation 
of a process, (using an iterative or a recursive model) is also accepted as a solution. 
Without the use of a computer the learner was hardly in the position to solve problems 
for which only an iterative model could be found.  

 
The following two results of our research should show how cognition is changing by the use 
of technology: 
 
4.1 Modular Thinking and Working 
 
Using modules is not new for the learners. Every formula used by the pupils can be seen as a 
module e.g. Hero's formula for the area of a triangle or the use of the cosine rule in 
trigonometry. 
 
Some of these modules are Black Boxes for the pupils which they can find in a formula book. 
But I hope that in the teaching process many of the modules at first are derived in a White 
Box phase and after that they are used in the problem solving process as Black Boxes. 
Knowing such a module means that the student has a model for his problem but when using 
this module he has to do the calculation himself. 
 
The computer, and especially CAS, opens a new dimension of modular thinking and working. 
The modular way of thinking is typical of informatics science and in informatics applications. 
Watching teachers and students in our research project we also found a change of 
mathematical thinking  and working when creating and using modules. 
 
The programming features of the CAS allow the students to create modules which can be 
used, on the one hand, in the White Box phase as didactic tools and, on the other hand, as 
Black Boxes for problem solving. 
 
While the modules of traditional math education mostly are the starting point for calculations, 
the CAS-modules often also do the calculations. W. Dörfler [Dörfler, 1991, pp71] calls any 
modules  
 

"knowledge-units" 
in which knowledge is compressed and 

in which operations can be recalled as a whole package. 
 
Creating modules means building a cognitive scheme, condensing cognitive experience. 
Using modules causes cognitive relief and a reduction of complexity, operations and complex 
knowledge can be activated as a unit at the same time. 
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This compressed knowledge can also cause new sorts of mathematical objects or new 
elements of mathematical language and, last but not least, a reorganisation of the 
mathematical activity. 
 
Teaching mathematics in accordance with the Module Principle shows the close connection 
between mathematics and informatics: 

Implementing a module in the field of mathematics means to define, to exactify, to 
describe constructively, to structure, to use or to develop a suitable algorithm.  
In computer science implementing refers to formulating in the language of CAS, 
applying earlier modules , utilising system resources or programming. 

 
Using tools like CAS this close relationship between mathematics and informatics will not 
only become more noticeable at the universities but also in schools. Bruno Buchberger 
characterises this new situation by demanding a new subject called „Mathformatics“. 
 
Using the Module principle the learning process could be divided into three phases: 
 
Phase 1: Understanding, structuring of knowledge, modelling. 

Before creating a module it is necessary to understand the mathematical subject and to 
connect the new subject with themes the students have learned before, just as to have 
experience with the language of the used CAS. 

 
Phase 2: Implementing, testing, documenting. 

Implementing a module means using the language of CAS for defining functions, using 
earlier modules or programming 
Testing becomes one of the most important activities. 
It is necessary that other learners are also able to understand the module and not only 
how to use it and therefore good documentation is necessary. 

 
Phase 3: Problem solving by using modules as Black Boxes. 

By applying constructed modules the actual reorganisation of mathematical activity can 
take place. 
These "knowledge-units" allow the learners to concentrate their activity on modelling, 
testing and interpreting. Operating will be done by the module. 

 
Depending on their source we distinguish three sorts of modules: 
 
(1) Modules produced by the students 
 

These are the most important ones. Pupils create the modules in a White Box phase, 
sometimes in single work, mostly in pair work or in groups. The testing of a module 
will often be done by other groups. After that, often supported by the teacher, the best 
versions of the module will be offered to all the pupils. In the Black Box phase the 
modules are used mostly via function call for problem solving. 

 
Typical applications: Complex calculations, formulas or tools which are often used, 
modules for visualisation or simulation, modules used as didactic instruments. For 
problem solving it is often useful to connect some smaller modules in order to form a 
more complex module. 
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(2) Modules created by the teacher 
 

To support the learning process of the students, it is sometimes useful to offer modules 
which could be used as didactic tools in the White Box phase or for complex 
calculations which are not the main goal in the problem solving process. In some of 
these modules the inner structure can be made accessible for the students, others will 
stay Black Boxes. 

 
(3) Modules which are made available by the CAS 
 

CAS are usually delivered as a system of modules partly offered in the core of the 
system and partly being available as a system extension. Some of these modules should 
become White Boxes for the learners, others will be used as Black Boxes, e.g. not every 
module for solving differential equations should become a White Box. The new 
flash-technology opens a new dimension of system extension and change. 

 
Working with modules causes a modular thinking 
A special expert in using modules is Eberhard Lehmann from Berlin [Lehmann, 2002]. He uses 
the module concept in the classroom starting in the 7th grade. He calls this didactical concept 
“concept of building stones”. Walking on the spiral into mathematics means developing a 
pool of building stones which can be used for problem solving. 
 
Goals of a module oriented mathematics education: 
 

• Defining modules 
• Analysing modules, using modules for experimental learning 
• Developing a pool of modules as a source for modelling, for problem solving 
• Using modules as black boxes 
• Connecting modules, building new more complex modules by using existing modules 

as building stones 
 
The results of Lehmanns investigations show that students being familiar with modules use 
them as new language elements and demonstrate a new quality of mathematical thinking. 
Important is not only to built a module and afterwards to forget it but to see the opportunity to 
use the constructed module in several ways. 
 
Examples 4.1:The module “difference quotient” 

[Lehmann, 2002, pp24] 
 
To discover the of the differential quotient as a limit of the difference  quotient a module 
which can be used for experimental learning is very helpful. 
 
Step 1: Defining a module „difference quotient“ 

Defining means storing 
as a function of two variables 

 
Step 2: Using the module „difference quotient“ - exploring the graphs for several values of h 
 
 
 
 

+ −
→

( ) ( ) ( , )f x h f x diffq x h
h

}{⏐( , ) 1, 0.5, 0.1, 0.1, 0.5, 1Graph diffq x h h = − − −
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figure 4.1 
 
Step 3: Connecting modules produced by the students with modules offered by the CAS  
 
 
 
 
 
 
 
 
 
 
 

figure 4.2 
 

 
Example 4.2: Distance of points and curves 

   [Lehmann, 2002, pp101] 
 
The module “distance” is especially suitable as a building stone for building more complex 
models by the cross connecting of given modules. 
 
Step 1: Defining a module „distance of two points“ P(a,b) and Q(c,d) 
 
 
Step 2: Using the module „distance“ - e.g. calculating the distance of points and curves 
 
 
 
 
 
 
 
 
 

   figure 4.3 
 
Step 3: Connecting modules produced by the students with modules offered by the CAS - e.g. 

looking for the smallest distance of two curves f and g by using the CAS-modules 
„solve“  and „differentiate“:  
Find the shortest distance of the functions f(x) = x2 and g(x) = ln(x) 

( )( )
0

lim ,
h

diffq x h
→

( ) ( ) ( )2 2a-c + b-d => distance a,b,c,d
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    figure 4.4 
 
Step 4: „Shutteling“ to the graphic-window and examine and discuss the results 
 
 
 
 
 
 
 
 
 
 
 

    figure 4.5 
 
 
Using modules – a chance and a danger: 
 
Example 4.4: The program package "VECTOR-CALCULATIONS" 
       by Thomas Himmelbauer, Vienna [Himmelbauer, 1997] 
 
This program package consists of a large number of programs and functions (more than 140 
functions and programs) which makes vector calculations possible in ⎥2 and ⎥3 and allows 
students to draw points, line segments, lines, circles and planes. Activating the package a 
separate toolbar appears which lets students display menus for selecting functions or 
programs. 
 
Some examples: 
 
Example 4.4.1: Find the distance of two skew lines 
 
Step 1: Using the function gepktrtg students get the parametric equations of the straight 

lines. 
The arguments of the function are two vectors, the position vector of a point and a 
direction vector. The equations are stored in the variables ger1 and ger2 

 
Step 2: Evaluating the function abswinge the result is the distance of the two skew lines. 

The arguments of the function are the names of the equations of the two lines 
(figure 4.?? <nash6> 
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       figure 4.6 
 
Example 4.4.2: Find out the position of planes 
 
Step 1: Store the equations of the 3 planes in the variables eb1, eb2 and eb3. 
 
Step 2: Evaluate the function drebenen, the result is a quadruple. The first element gives 

the answer: "A point of intersection exists", the others are the 3 coordinates of the 
point (figure 4.7) 

 
 
 
 
 
 
 
 
 

          figure 4.7 
 
The chance: 
 

If the powerful package is used in the same way as the  teacher who developed this 
system of modules it is a chance: The first phase is a White Box phase in which 
students have to develop problem solving strategies and they also have to do the 
programming for some of the modules themselves. 

The danger: 
But if there is no White Box phase before or after in which students have to find 
strategies and algorithms to solve such problems of analytic geometry the idea of those 
Black Box modules is very contrary to the fundamental goals of mathematics education. 
 
Finding suitable Black Box functions by searching for suitable words in the menues and 
inserting given values is not doing mathematics. 
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4.2 The “Window-Shuttle” Strategy 
 
The Computeralgebra System  as a medium for prototypes 
 
General concepts become cognitively available through concrete representatives or in our words 
through prototypes (e.g. if you use the common concept „table“ you are thinking about concrete 
prototypes which you have experienced). 
 
The computer allows us a greater variety of prototypes of a concept and also offers some which 
were not available before. 
 
Typical for this thesis is the concept of functions. The pupil will find access to this concept not 
through a clear cut abstract definition but rather through a supply of suitable prototypes which 
draw the pupil´s attention to the vital characteristic of the concept. In this process the important 
activity is the establishment of relationship among the individual prototypes. It is in this way that 
the learner can comprehend that the individual prototype is simply one of many possibilities of 
appearance of the concept of function. Not until after this process does it make any sense to 
verbalize or formally define the concept „function.“ 
 
Observing traditional mathematics education you can find the following prototypes of the  
fundamental concept of functions: 
 
• word formulas 
• symbolic prototypes like terms, parametric equations, polar equations 
• graphs 
• tables 
The computer also offers new prototypes e.g. 
• recursive models 
• programs 

 
 
It is not enough to make various 
prototypes of a general concept available, 
the establishment of the relationship 
among the individual prototypes leads the 
pupil´s attention from the specificity of a 
singular prototype to the superior general 
conceprt 
 
In order to recognize the „prototypical“ as 
an invariable characteristic, the prototype 
often has to be changed. 
 
 

Figure 4.8 
 
In traditional mathematics education prototypes mostly are available in a serial way. A typical 
example is the discussion of curves: One prototype, the term is given. The students have to find 
the graph by calculating the zeros, the extreme values, the inflection points and they have to 
determine a table of values. 
 

table

word-formula

graph

termrecursive model

programs

prototypes of functions
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The main importance of the computer is that the learner can use several prototypes parallely. 
The given term allows the pupil to draw the graph directly and the table is the result of activating 
one key of the tool. The real learning process consists of shuttling between several prototypes 
and investigating the influence of changes of one prototype in the others. Therefore we call this 
didactical concept the Window Shuttle Method. 
 
The steps of the learning process according to the window shuttle technique and the  
role of CAS in this process: 

• The pupil activates various adequate prototypes for the problem or the concept in 
different windows of CAS, for example a symbolic prototype in the algebra window and 
a graphic prototype in the graphic window. 

• The pupil now works with the individual prototypes, whereby the advantages of CAS 
such as interactivity, easy manipulation and repetition can be applied. 

• The multiple window technique enables the learner to work simultaneously with various 
prototypes. In continuous interaction between the algebra and graphic window and the 
table, the effect of algebraic operations on the graphs or on the table values can be 
examined or ideas for activities in the algebra window can result from examining graphs 
or tables. Furthermore the consequences of the alteration of individual parameters in the 
algebra window, can be examined directly in other windows. 

 
A concept or a solution of a problem develops by shuttling back and forth between the various 
forms of representation, meaning between different windows in CAS. 
 
The observation of the students involved in our CAS project strengthens the thesis that the tool 
CAS does not only support cognition, it becomes part of cognition. 
 
 
Example 4.5: First experience with the function concept in the 7th grade: Direct - indirect 

proportion 
 
This example is part of an investigation, called „observation window“ in the Austrian CAS 
project [Klinger, 1997]. The goal was to observe the pupils´ behavior: The learners should  choose 
a prototype of a function suitable for a given problem and they should discover and use strategies 
for the proof of a definite functional relation. 
 
The initial problem for indirect proportions was rather simple: 

The distance between Vienna and Innsbruck is 500 km. Calculate the driving time for 
several mean velocities. 

 
According to the goals of this investigation - pupils should actively discover new concepts and 
strategies - it was necessary to give precise instructions: 
• Calculate the time for the velocities in the given table. What happens if the velocity is two 
times, three times, ten times, k-times greater than before? 
• Find a formula in the y-Editor. Using this formula find the values of a table. Check the 
correctness of the values of the table given by the teacher. 
• Calculate the product of the velocity and the appropriate time, at first in the Home Screen and 
then in the Data/Matrix Editor. Select 7 values of the given table. What is noticeable? 
• Find the graph of the table values in the Graphic Window. Walk along the graph, using the 
Trace Mode and check the values of the teacher´s table. 
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The first goal was to observe which prototype the pupils will prefer. The following were 
available (figure 4.9 to 4.13): 
 

 
figure 4.9     figure 4.10 
 

 
figure 4.11 figure 4.12 
 

 
figure 4.13 
 
The formula was found in the y-Editor (figure 4.9) Shuttling to the table the TI-92 calculates the 
table values using this formula. Pupils can find a suitable section of the table (figure 4.10 and 
4.11). A surprise was the definition of the function in the Home screen and the use of this 
prototype in the testing phase. Such a strategy is unusual in 7th grade. 
Just as new is the frequent choice of the graphic prototype which, with the help of the CAS, is 
now available very easily by shuttling from the table to the graphic window. Shuttling back is 
possible by using the Trace mode which allows the learner to observe the coordinates of the 
respective points 
 
The second goal was to discover and to select proof-methods for indirect proportions 
 
The following strategies were used: 
 
Strategy 1: Examine in the Table editor in several cases: 
• two fold corresponds to one half 
• five fold corresponds to one fifth 
• n-fold corresponds to one nth 
 



 29

Strategy 2: Proof with the formula either in the Home screen or in the y-Editor by using the 
„with- operator“ or calculating function values of the defined function (figure 4.14) 
 

 
figure 4.14 
 
Strategy 3: Proving the following rule in the Home screen or in the y-Editor (included the control 
of the table) or in the Data/Matrix Editor (figures 4.15 to 4.17): 
• The product of the argument and the function value is constant 
 

 
figure 4.15     figure 4.16 
 

 
figure 4.17 
 
Strategy 4: Drawing the graph in a suitable intervall in the graphic window. 
The „typical curve“ is called hyperbola 
 
The third goal: These strategies should also enable the learners to decide in certain examples 
that neither a direct nor an indirect proportion exists. 
 
The pupils had to examine the following problem: 
The force of gravitation of the earth with respect to the distance. 
 
The pupils got a table of values in the Data/Matrix Editor. Observing the graph (figure 4.18) could 
cause the supposition: It looks like a hyperbola - it is an indirect proportion. But shutteling to the 
Data/Matrix Editor and using strategy 3, pupils found out: The product of argument and function 
value is not constant (figure 4.19) 
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figure 4.18     figure 4.19 
 
Some results of pupils´ behavior: 
Pupils use the possibility of having several prototypes of the function parallely at their disposal. 
Shutteling between several prototypes becomes a common practice and allows then to use the 
advantages of certain prototypes. 
Several pupils develop preferences to several prototypes. In traditional math education, the table 
often was the only prototype which was at their disposal.  I did not expect that pupils of the 7th 
grade will also use the graph and the defined function (see figure 3.6), the last one is prefered by 
more gifted children. 
It is not only easier now to get tables, the opportunity to calculate with whole rows is the main 
importance of function prototypes in the Data/Matrix Editor. 
The testing strategies strengthen the decision competence according to the type of the function. 
 
Example 4.6: The third Kepler rule 

Circulating time of planets with respect to the distance from the sun [Schmidt, 1997] 
 
Goals of this example: 
• Describing of real phenomena with functions. 
• Starting with measured data, the students should discover the rule by using several prototypes 
of functions. 
• The features of CAS and the Window Shuttle Method should open up new possibilies for an 
experimental and pupil-oriented learning process 
 
The students got a table with observation data: 

Planet Distance (in mil. Km) Circulation time in day
Merkur 57.9 88 
Venus 108.2 225 
Erde 149.6 365 
Mars 227.9 687 

Jupiter 778.3 4392 
Saturn 1447.0 10753 
Uranus 2870.0 30660 
Neptun 4497 60150 
Pluto 5907 90670 

figure 4.20 
 
The first step was to enter the data of the table into the Data/Matrix Editor of the TI-92 (figure 
4.21). To come to suppositions about the sort of functions it is better to „shuttle“ to the graphic 
window (figure 4.22). Zooming strengthened the assumption: It could be a power function of the 
type y = a.xc. 
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figure 4.21     figure 4.22 
 

 
figure 4.23 
 
Because the pupils had experience with the idea of linear regression they decided a 
„log-log-plot“ with axes log(x) and log(y) which allowed them to use their knowledge: 
 

 log(y) = log(a . xc) 
 log(y) = c . log(x) + log(a) 
 

Defining new rows c3 = log(c1) and c4 = log(c2) the calculation was done by the TI-92 (figure 
4.24). If the suppositon is correct the points should be situated on a straight line (figure 4.25) 
 

 
figure 4.24     figure 4.25 
 
By using the TI-92 as a black box the pupils could now find the equation of the linear regression 
(figure 4.26 and 4.27). The correlation coefficient is very good (near 1). Shuttling to the graphic 
window enabled the visualisation of this result (figure 4.28) 
 

 
figure 4.26     figure 4.27 
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figure 4.28 
 
Now the assumption was confirmed: The circulation time of the planets with respect to the 
distance from the sun is a power function of the type y = a.xc. 
 
To find the parameters a and c the pupils first had to jump to the y-Editor where the equation of 
the linear regression was stored. Remembering the equation log(y) = c.log(x) + log(a) they found 
out that the slope of the line is c and the y-intercept of the line is log(a). Thus they calculated the 
equation of the desired power function (figure 4.29). After squaring the equation the 3rd Kepler 
Rule can be seen:  
„The squares of the circulation times of the planets and the cubes of the radius are 
proportional“ 
Shuttling to the y-Editor and the grahic window and drawing the power function the result can be 
visualized (figure 4.30 and 4.31) 
 

 
figure 4.29     figure 4.30 
 

 
figure 4.31 
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Summary: 
 
Now I will come to the end, compressing my thoughts about the influence of 
technology in several roles of mathematics, looking for a summary or a “word 
formula” of my lecture: 

 Technology supports the value of knowledge in the abstract phase as well as 
the value of usability in the concrete phase of the mathematical process 

 Technology changes the language of mathematics 
 Technology causes a new quality of mathematical thinking 

These changes of mathematical thinking and of the language of mathematics must also 
be considered in mathematics education. 
 
.   
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