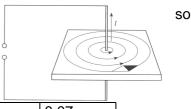

- Von drei Punkten A, B und C eines horizontalen Geländes ist die gegenseitige Lage bekannt: BC = 289 m, CA = 601 m, ∠(BCA) = 99,5°. Ein unzugänglicher Punkt D liegt auf der Verlängerung der Strecke BC über B hinaus. Um die Entfernung BD zu bestimmen, wird in A der Winkel ∠(DAB) = 26,3° gemessen. Berechne BD!
- 2. a) Von einem allgemeinen Dreieck kennt man: a = 7.5; c = 6.3; $\alpha = 58^{\circ}$. Berechne die fehlenden Seiten und Winkel sowie den Flächeninhalt des Dreiecks!
 - b) Nimm die Seiten v und w sowie den Winkel ϵ als gegeben an und leite damit eine Formel zur Berechnung der fehlenden Seite u ab !

- 3. a) Ein Flugzeug hat eine Eigengeschwindigkeit von 600 km/h. Es weht ein Wind aus Richtung Osten mit 120 km/h. Um genau Richtung Norden zu fliegen, muss der Pilot daher in eine nordöstliche Richtung steuern. Welchen Winkel schließt diese Richtung mit der Nordrichtung ein und wie groß ist die tatsächliche Geschwindigkeit?
 - b) Um die Lage eines Punktes Q zu bestimmen, werden vom Punkt A aus bezüglich der Standlinie AB[A(10/-20), B(40/50)] folgende Angaben gemessen:


 \angle (QAB) = 53,2°, AQ = 39 m. Berechne die kartesischen Koordinaten von Q!

- 4. a) Gib alle Winkel in $[0^\circ; 360^\circ]$ an, für die gilt: $\cos x = -0.837$
 - b) Beweise: $\frac{\sin x}{1-\cos x} = \frac{1+\cos x}{\sin x} \ (x \neq 0^{\circ}, \ 180^{\circ})$
 - c) Von einem Turm mit der Höhe h werden zwei in derselben Richtung liegende Geländepunkte A und B unter den Tiefenwinkeln α bzw. β (α > β) gesehen. Drücke die Entfernung AB durch h, α und β aus !

Lösungen:

- 1) BD = 619 m;
- 2a) $\gamma = 45,43^{\circ}$; $\beta = 76,57^{\circ}$; b = 8,6; $A \approx 23$
- 3a) $\alpha = 11.5^{\circ}$; v = 588 km/h 3b) Q(-9.5/13.8)
- 4a) x = 146,82° oder 213,18° 4b) $\overline{AB} = \frac{h}{\tan \beta} \frac{h}{\tan \alpha}$

 Fließt durch einen Leiter ein konstanter elektrischer Strom I, entsteht in der Umgebung des Leiters ein Magnetfeld. Um einen Zusammenhang zwischen der magnetischen Feldstärke B und dem Abstand r vom Leiter zu ermitteln, wird eine Messreihe durchgeführt, die folgende Ergebnisse liefert:

r (in m)	0,03	0,04	0,05	0,06	0,07
B (in Tesla)	6,7.10 ⁻⁶	5.10 ⁻⁶	4.10 ⁻⁶	3,2.10 ⁻⁶	2,8.10 ⁻⁶

- a) Stelle B in Abhängigkeit von r graphisch dar. (r...E: 1 cm; B...E: 1.10⁻⁶ T = 1 cm)
- b) Bestimme einen Funktionstyp, der zu den gegebenen Werten passt und stelle eine Formel auf!
- c) Wie groß ist die magnetische Feldstärke in 10 cm Abstand? In welcher Entfernung ist $B = 4.10^5 T$?
- 2. a) Berechne: (1) 101010110: 1001 = (2) 10101.1101 =
 - b) Wandle folgende Zahlen ins Dezimalsystem um: (30401)₅ = ; 7E3F =
 - c) Verwandle 53935 ins Hexadezimalsystem!
- 3. a) Gegeben ist eine harmonische Schwingung durch die Gleichung y(t) = 3.sin(10t) Bestimme die Amplitude, die Schwingungsdauer und die Frequenz! Zu welchen Zeitpunkten hat die Schwingung die Elongation 2?
 - b) Beweise: $(m.n)^r = m^r.n^r$ $(m,n \in 3, r \in \angle)$ Formuliere die Regel in Worten!
- 4. a) Gegeben ist die Funktion $f(x) = x^3$.

Beschreibe den Verlauf der Funktion $g(x) = c.x^3$ im Vergleich zu f(x) in Worten. Behandle insbesondere die Fälle (1) c>1, (2) 0<c<1 und (3) c<0! Bestimme c so, dass g(x) durch den Punkt P(3/2,25).

Bestimme die fehlende Koordinate von $R\left(r_x \middle| -\frac{2}{3}\right)$ so, dass R auf g liegt!

b) Der Durchmesser eines Protons beträgt rund 2,8.10⁻¹⁵ m. Berechne, wie viele Protonen zusammen ein Volumen von 1 mm³ ergeben, wenn man annimmt, dass die Protonen

$$\text{kugelf\"{o}rmig sind!}\left(V_{\text{Kugel}} = \frac{4r^3\pi}{3}\right)$$

Lösungen:

1) b) Typ:
$$f(x) = \frac{c}{x}$$
, $B(r) = \frac{2.10^{-7}}{r}$; c) $B(0,1) = 2.10^{-6}$ T; 5 mm

- 2) a) (1) 100110 (2) 100010001 b) 1976; 32319 c) D2AF
- 3) a) r = 3; T = 0.63 s; f = 1.59 Hz; t = 0.63k + 0.2394 oder t = 0.63k + 0.0756 mit t = 0.75 mit
- 4) a) $g(x) = 0.083x^3$; $r_x = -2$ b) $8.7.10^{34}$