1) Bestimme die Lösungsmenge folgender Gleichungen:

a)
$$\frac{1}{x^2-x} - \frac{1}{x(x+1)} = \frac{2}{x^2-1}$$
 (Führe mit dem Tl92 die Äquvalenzumformungen durch).

- b) $x^2 + 9x 36 = 0$ (Verwende den Satz von VIETA und gib den Lösungsweg an.)
- 2 a) Gib die Lösungsformel in den TI92 ein und löse die Gleichung durch Belegen der Koeffizienten, aber ohne SOLVE:

$$(2x-1)^2 + (x + 1)^2 = x + 10$$

b) Drücke die Variable v aus. Rechne ohne und mit TI92 und vergleiche die Ergebnisse:

$$x = u (v - w) - v$$

- **3)** Ein Supermarkt bietet 3 verschiedene Pizzasorten zu den Preisen P1, P2 und P3 an. Pro Tag werden S1, S2 bzw S3 Stück Pizzas der jeweiligen Sorte verkauft.
- a) Gib eine Formel für den Gesamtverkaufspreis pro Woche (6 Tage) an.
- b) Die Preise werden bei P1 um 10.- bei P2 um 10% und bei P3 zuerst um 5%, dann noch einmal um 5% erhöht. Gib eine Formel für den Gesamtverkaufspreis pro Tag an.
- c) Durch die Preiserhöhung ging der Absatz bei der ersten Sorte um 20% zurück, bei den beiden anderen Sorten um 20 Stück Pro Tag. Gib jetzt eine Formel für den Gesamtverkaufspreis pro Tag an.
- d) Berechne die durchschnittliche Einnahme pro Pizza, wenn von der ersten Sorte 30 Stück (45.-/Stück), von der zweiten Sorte 40 Stück (50.-/Stück) und von der dritten 50 Stück (35.-/Stück) verkauft wurden.
- **4 a) In einem rechtwinkligen Drei** ist eine Kathete um 7 cm kürzer als die andere, die Hypotenuse ist um 2 cm länger als die längere Kathete. Berechne die Länge der Seiten.
- **b)** Ein rechteckiger Sportplatz ist 80 m lang und 60 m breit. Die rechteckige Spielfläche ist überall von einem gleichbreiten Zuschauerraum umgeben und nimmt insgesamt 50% des gesamten Platzes ein. Berechne die Breite des Zuschauerraumes.

Name:

- 1) Beweise:
 - a) $2 + 4 + 6 + ... + 2n = n^2 + n$ (Verwende die vollständige Induktion).
 - b) (a . b) . c = b . (a . c) (Gib die verwendeten Gesetze an).
- 2) a) Streiche jene Rechengesetze, die bei der jeweiligen Umformung nicht verwendet wurden:

$$3x + 2 = x \\ 3x + 2 - x = x - x \\ 3x - x + 2 = 0 \\ (3 - 1) \cdot x + 2 = 0 \\ 2x \cdot 0,5 = -2 \cdot 0,5 \\ 1 \cdot x = -1 \\ (K+), (A+), (I+) \\ (K+), (DG), (I \cdot) \\ (N+), (DG), (I \cdot) \\ (N+), (I \cdot) \\ (K \cdot), (A \cdot) \\ (K \cdot), (I \cdot), (DG) \\ (N+), (N \cdot), (I \cdot), (DG) \\ (N+), (N \cdot), (I+) \\ (N+), (N \cdot), (I+) \\ (N+), (N \cdot), (N \cdot), (N \cdot) \\ (N+), (N \cdot), (N \cdot), (N \cdot) \\ (N+), (N \cdot), (N \cdot), (N \cdot), (N \cdot) \\ (N+), (N \cdot), (N \cdot), (N \cdot), (N \cdot), (N \cdot) \\ (N+), (N \cdot), (N \cdot), (N \cdot), (N \cdot), (N \cdot), (N \cdot) \\ (N+), (N \cdot), (N \cdot$$

- b) Welche Rechengesetze gelten in Q_o-?
- 3) Löse folgende Ungleichungen und gib die Lösungsmenge auf drei verschiedene Arten an (mathematisch, deutsch, geometrisch):

a)
$$\frac{x+2}{x-1} \ge -2$$

b)
$$-1 + x < 3 - x < 5 + x$$

c)
$$x^2 - 2x - 3 = 0$$

Punkteverteilung: 12 (8 / 4) - 12 (8 / 4) - 24 (8 / 8 / 8)

3. Schularbeit, am 25. Februar 1998

Name:

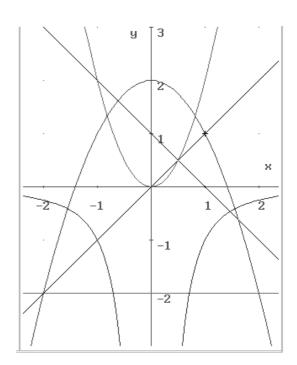
Klasse: 5.b

1)	a) A sei die Menge der Schüler am Amstettner Gymnasium, die aus Amstetten kommen, und M die Menge aller Mädchen dieser Schule.				
	Beschreibe folgende Mengen mit A und M sowie den bekannten Mengenoperationszeichen: (1) Alle Mädchen aus Amstetten:				
	(2) Alle Buben aus	en aus Amstetten und Mädchen, die nicht aus Amstetten sind:			
	Beschreibe in Deut	utsch:			
	(3) A' ∩ M :				
	(4) (A ∪ M)' :	·			
b) (ende Mengen: $A = \{x \in \mathbb{R} \mid -2 \le x < 1\}, B = \{x \in \mathbb{R} \mid x < -2 \lor x \ge 0\}$ B und $D = B \setminus A'$ auf 2 verschiedene Arten:			
	(1) Mathematisch:	$C = \{x \in \mathbb{R} \mid \underline{\hspace{1cm}} \}$			
		$D = \{x \in \mathbb{R} \mid \underline{\hspace{1cm}}\}$			
	(2) Geometrisch au	f der Zahlengeraden: Zeichne A und B mit Bleistift, C blau und D grün.			
2)	Löse folgende quadratische Gleichungen mit dem TI-92:				
	a) $x^2 - x = 2 \text{ mit}$	(1) FACTOR:			
ΕZ		AZ			
		(2) SOLVE:			
ΕZ		AZ			
	b) $x^2 + 2x = 2$ mit	(1) TABLE (auf 1 Dez. genau):			
		(2) GRAPH:			

3)	Gegeben sind die linearen Funktionen $f(x) = \frac{1}{2}x$ und g: $g(2) = -1$, $g(0) = 2$.			
	a) Berechne g(x): b) Berechne den zu $x=3$ gehörigen y-Wert von f im HOME - Modus. c) Berechne den Schnittpunkt im GRAPHIK-Modus. d) Berechne $\{x\in\mathbb{R}\mid -1< g(x)<2\}.$			
	EZ AZ			
4)	Ein Handwerker der Firma FLIESENFRITZ verlangt pro Stunde 400 und einen einmaligen Pauschalbetrag von 2000 für Fahrtspesen. Ein anderer Handwerker der Firma BODENBAU verlangt 600 pro Stunde und keine Fahrtspesen.			
a) Gib Funktionsterme F(t) und B(t) für die Kosten der beiden Firmen abhängig von d t an und berechne, wann F und wann B günstiger ist (Rechnung und Zeichnung: 10 800				
	b) Was bedeuten folgende Änderungen der Graphen: (1) B(t) beginnt bei 2 Stunden (auf der t-Achse):			
	(2) F(t) verläuft parallel zur t-Achse:			
	NUS) Wenn Du das Beispiel 2.b) ohne Umformen durch den Schnitt von 2 Funktionsgraphen im APHIK - Modus lösen kannst, bekommst Du 3 Zusatzpunkte.			

Name: Klasse: 5.b

- 1) Die Kosten bei einer CD Produktion steigen linear mit der Anzahl der produzierten CDs. 100 CDs kosten öS 7000.-, 500 kosten 15000.-.
- a) Berechne fixe und lineare Kosten durch Lösen von 2 Gleichungen mit den Unbekannten k (variable) und d (fixe Kosten) mit dem TI92. Schreibe die Eingaben und Ausgaben im HOME-Fenster genau ab.
- b) Die Erlösfunktion für x verkaufte CDs ist zusammengesetzt aus $E_1(x) = 7500$ (für weniger als 300 CDs) und $E_2(x) = 100x 25000$ (ab 300 CDs). Berechne den Schnittpunkt von $E_1(x)$ und K(x) mit dem TI92 und kommentiere diesen auf deutsch.
- c) Fertige eine Zeichnung der Kosten- und der Erlösfunktion mit Hilfe des TI92 an. Gib die Eingaben im HOME-, Y- und WINDOW-Fenster an. Zeichne das GRAPHIK-Fenster ab.
- d) Lies aus der Zeichnung den Schnittpunkt von K(x) und E ₂(x) ab und kommentiere die x-Werte zwischen den beiden Schnittpunkten auf deutsch.
- **2)** Die Mobilkom-Austria bietet 3 Handy-Tarife an. Die Grundgebühren betragen bei den 3 Tarifen 180, 270 bzw. 510 S pro Monat, die Tagesgesprächsgebühr/Minute 7,90; 7,90 bzw. 5,20 S und die Nachtgesprächsgebühr/Minute 4,20; 2,90 bzw. 2,90 S. Der Grundgebührenvektor sei G, der Tagesgesprächsgebührenvektor T und der Nachtgesprächsgebührenvektor N.
- a) Gib eine Formel für die Kosten für ein Monat bei je 3 Stunden Tages- und Nachtgesprächen an.
- b) Speichere die Vektoren im TI92 ab und berechne den Kostenvektor von a). Schreibe Ein- und Ausgabezeilen ab.
- c) Berechne die Kosten für eine Preissteigerung der Grundgebühren um 5% und bei einer Verbilligung der Tagesgesprächsgebühr von 0,20 S bei jedem Tarif bei gleichen Gesprächszeiten.
- 3) Gegeben sind die Punkte P = (3/1), Q = (-2/4) und R(-4/0).
- a) Berechne den Vektor a = PQ und b = PR.
- b) Berechne den Vektor a b.
- c) Fertige eine Zeichnung an.
- 4) Ordne den untenstehenden Graphen aus den folgenden Funktionstermen passende zu:


$$\begin{array}{lll} f_1(x) = x, & f_2(x) = -x, \\ f_3(x) = -x + 1, & f_4(x) = x - 1, \\ f_5(x) = 2x^2, & f_6(x) = -2x^2, \\ f_7(x) = -2, & f_8(x) = 2, \end{array}$$

$$f_9(x) = \frac{1}{x_1^2}$$
, $f_{10}(x) = -\frac{1}{x_1^2}$, $f_{12}(x) = -\frac{1}{x}$,

$$f_{13}(x) = x^2 - 2$$
, $f_{14}(x) = -x^2 + 2$,

$$f_{15}(x) = x^2 - 2$$
.

Punkteverteilung: 18 - 10 - 8 - 12

5. Schularbeit, am 22. Mai 1998

Name: Klasse: 5.b

1) Beweise, daß beim Skalaren Produkt für zwei Vektoren A, B \in R² und r \in R folgendes Gesetz gilt:

$$r \cdot (A \cdot B) = (r \cdot A) \cdot B$$

- 2) Gegeben sind die Punkte $P = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $Q = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ und $R = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$.
 - a) Gib eine Parameterdarstellung der Geraden durch R an, die zu PQ normal ist.
 - b) Gib eine Parameterdarstellung der Geraden durch Q an, die zu PR parallel ist.
 - c) Zeige, daß der Punkt R nicht auf der Geraden von b) liegt.
 - d) Ermittle den Vektor 2QP RP + 2RQ durch eine Zeichnung und lies seine Koordinaten aus der Zeichnung ab.
- 3) Gegeben ist das Viereck ABCD: $\mathbf{A} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$ und $\mathbf{D} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.
 - a) Zeige durch Rechnung, daß das Viereck ein Deltoid ist. (Hinweis: Zeige, daß die Diagonalen aufeinander normal stehen und daß AC genau durch den Halbierungspunkt von BD geht.)
 - b) Berechne seinen Flächeninhalt.

BONUS) Wenn Du durch Rechnung C so abändern kannst, daß eine Raute entsteht bekommst Du 3 Zusatzpunkte.

- 4) Von einem Quadrat mit der Seitenlänge $\sqrt{40}$ kennt man die Parameterdarstellung der Seite AB: $\mathbf{X} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} + \mathbf{s} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \text{ und die lineare Funktion der Seite AD: } \mathbf{g(x)} = 3\mathbf{x} + 3 \ .$
 - a) Berechne den Eckpunkt A (Hinweis: Gib die Parameterdarstellung von AB in Form einer linearen Funktion f(x) an und schneide f(x) mit g(x)).
 - b) Berechne die übrigen Eckpunkte. (Nur 1 Lösung!)
 - c) Berechne den Flächeninhalt mit der Formel

$$A = \frac{1}{2} d^2.$$

Hinweis: Führe das gesamte Beispiel nur mit dem TI92 aus. Dokumentiere die einzelnen Schritte durch genaues Abschreiben der Ein- und eventuell auch der Ausgabezeile im HOME Modus.

Hilfe: Solltest Du den Eckpunkt A nicht berechnen können, hier ist er, damit Du bei b) weiterrechnen kannst:

$$A = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Punkteverteilung:

1)	6	
2)	12 (3/3/3/3)	
3)	12 (8/4) + 3	
4)	18 (8/6/4)	