BspNr: F0211

Themenbereich	
Integralrechnung	
Ziele	vorhandene Ausarbeitungen
Numerische Integrationsverfahren	TI-92 (F0211a)
Analoge Aufgabenstellungen – Übungsbeispiele	F0210
Lehrplanbezug (Österreich):	8. Klasse
Quelle: Dr. Thomas Himmelbauer	

Numerische Integration

Angabe:

Gegeben ist die Funktion: $f(x) = \frac{x^4}{20} - \frac{x^3}{20} - \frac{9x^2}{2} + \frac{58x}{5} + 16$.

Fragen:

Berechne $\int_{2}^{4} f(x) \cdot dx$ mit

- 1) Untersumme
- 2) Obersumme
- 3) Sekantenverfahren (Trapezverfahren)
- 4) Tangentenverfahren
- 5) Verfahren von Poncelet
- 6) Simpsonschem Verfahren

für eine Partition des Integrationsintervalles in 60 gleichgroße Teile. Alle Kommastellen der Ergebnisse sind anzugeben. Die entsprechenden Formeln sind für das Beispiel angepasst aufzuschreiben und die Bildungsgesetze der Teilungspunkte sind anzugeben.

Die Güte der einzenen Verfahren ist zu bewerten und zu begründen.

BspNr: F0211a

Ausarbeitung (System: TI-92)

Formeln:

Obersumme:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{n} \cdot \sum_{i=0}^{n-1} f(x_i)$$
 (Funktion fallend)

Untersumme:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{n} \cdot \sum_{i=1}^{n} f(x_i)$$
 (Funktion fallend)

Trapezformel:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{2n} \cdot \left[f(x_0) + \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Tangentenformel:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{n} \cdot \sum_{i=1}^{n} f(x_{i}^{'})$$

Poncelet: Mittelwert von Trapezformel und Tangentenformel:

Simpsonsche Formel:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{6n} \cdot \left[f(x_0) + 4 \cdot \sum_{i=1}^{n} f(x_i') + 2 \cdot \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Dabei ist a = 2 die Untergrenze des Integrationsintervalles, b = 4 ist die Obergrenze des Integrationsintervalles, n = 60 ist die Anzahl der gleich großen Teile des Intervalles [a, b].

Die x_i sind die Teilungspunkte des Intervalles [a, b].

$$x_0 = 2$$
, $x_1 = 2 + 1 \cdot \frac{2}{60}$, $x_2 = 2 + 2 \cdot \frac{2}{60}$, ..., $x_{60} = 4$

Die x_i sind die Halbierungspunkte der Teilintervalle.

$$x_1' = 2 + \frac{2}{120}$$
, $x_2' = 2 + 3 \cdot \frac{2}{120}$, $x_3' = 2 + 5 \cdot \frac{2}{120}$, ..., $x_n' = 2 + 119 \cdot \frac{2}{120}$

Daher müssen die Formeln auf folgende Weise angepasst werden:

$$O = \text{Obersumme: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot \sum_{i=0}^{59} f(x_i) \text{ (Funktion fallend)}$$

$$U = \text{Untersumme: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot \sum_{i=1}^{60} f(x_i) \text{ (Funktion fallend)}$$

Tr = Trapez formel:
$$\int_{2}^{4} f(x) \approx \frac{2}{120} \cdot \left[f(2) + \sum_{i=1}^{59} f(x_i) + f(4) \right]$$

$$Ta = \text{Tangenten formel: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot \sum_{i=1}^{60} f(x_{i}^{'})$$

 $P = \frac{Tr + Ta}{2}$ Poncelet: Mittelwert von Trapezformel und Tangenteformel:

S = Simpsonsche Formel:
$$\int_{2}^{4} f(x) \approx \frac{2}{360} \cdot \left[f(2) + 4 \cdot \sum_{i=1}^{60} f(x_{i}^{'}) + 2 \cdot \sum_{i=1}^{59} f(x_{i}) + f(4) \right]$$

Nun führen wir für die Summen $\sum_{i=1}^{59} f(x_i)$ und $\sum_{i=1}^{60} f(x_i)$ die Abkürzungen A und B ein.

Damit vereinfachen sich die Formeln zu:

$$O = \text{Obersumme: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot (f(2) + A) \text{ (Funktion fallend)}$$

$$U = \text{Untersumme: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot (A + f(4))$$
 (Funktion fallend)

Tr = Trapez formel:
$$\int_{2}^{4} f(x) \approx \frac{2}{120} \cdot (f(2) + 2A + f(4))$$

$$Ta = \text{Tangenten formel: } \int_{2}^{4} f(x) \approx \frac{2}{60} \cdot B$$

$$P = \frac{Tr + Ta}{2}$$
 Poncelet: Mittelwert von Trapezformel und Tangenteformel:

S = Simpsonsche Formel:
$$\int_{2}^{4} f(x) \approx \frac{2}{360} \cdot (f(2) + 4 \cdot B + 2 \cdot A + f(4))$$

Nun lassen sich die Formeln leicht berechnen und mit dem exakten Wert vergleichen.

F1790 F27
- [003.72247777777] T[76.J62J] T[60.16]
[940.445]
\blacksquare sum(seq(y1(x), x, 2 + 2/60, 4 - 2/60, 2/60))
5870686499
8100000
$= sum \left[seq \left(y1(x), x, 2 + \frac{2}{120}, 4 - \frac{2}{120}, 2/60 \right) \right]$
47667654007
64800000
>,×,2+2/120,4−2/120,2/60>>+b
MAIN RAD AUTO FUNC 14/30



