BspNr: E0010

Themenbereich			
Quadratische Funktionen			
Ziele vorhandene Ausarbeitungen			
• Interpretation der Koeffizienten einer quadratischen Funktion	TI-92 (E0010a)		
 Veranschaulichung des Begriffes mit Hilfe physikalischer Anwendungen 			
Analoge Aufgabenstellungen – Übungsbeispiele	E0011, E0012		
Lehrplanbezug (Österreich): 5. Klasse			

Quelle: W. Schmidt, Mathematikaufgaben: Anwendungen aus der modernen Technik und Arbeitswelt. Klett: Stuttgart 1984

Messung des Benzinverbrauchs 1

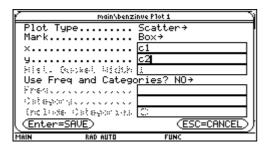
Angabe:

In folgender Tabelle sind die Messungen des Treibstoffverbrauches von verschiedenen Fahrzeugtypen in Abhängigkeit von der Geschwindigkeit angegeben.

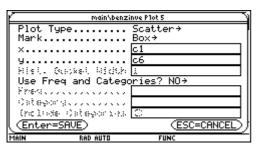
v in km/h	Verbrauch in Liter pro 100 km				
	Golf D	Audi 100	Ford Escort	DB 200	DB 450SE
30	3	4,6	4,6	6,01	10
40	3,05	4,64	4,64	6,09	10
50	3,2	4,75	4,78	6,25	10,1
60	3,44	4,93	5	6,49	10,3
70	3,79	5,18	5,31	6,81	10,7
80	4,23	5,51	5,71	7,21	11,1
90	4,78	5,91	6,2	7,69	11,7
100	5,42	6,38	6,78	8,24	12,3
110	6,16	6,93	7,44	8,88	13,1
120	7	7,55	8,2	9,6	14
130	7,94	8,24	9,04	10,4	15

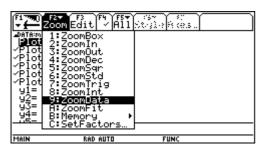
Fragen:

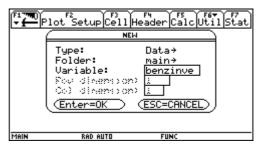
- 1) Stelle die Daten graphisch dar und finde für jede Fahrzeugtype eine Funktion, die den Verbrauch in Abhängigkeit von der Geschwindigkeit berechnet!
- 2) Berechne mit Hilfe dieser Funktion den Verbrauch für eine Geschwindigkeit von 140 km/h!
- 3) Der Kraftstoffverbrauch h\u00e4ngt vom Rollwiderstand, dem Motorwirkungsgrad und dem Luftwiderstand ab. Der Luftwiderstand ist dem Quadrat der Geschwindigkeit proportional: Welche Fahrzeugtype hat den besten Luftwiderstand? Wie \u00e4ndern sich die Verbrauchswerte bei 140 km/h, wenn der Luftwiderstand um 25% gesenkt wird?
- 4) Wie viel Prozent des Kraftstoffverbrauches wird bei 50 km/h und bei 100 km/h vom Luftwiderstand verursacht?

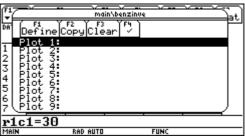

BspNr: E0010a

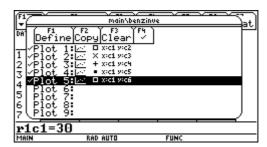
Ausarbeitung (System: TI-92)

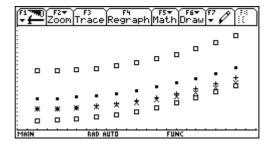

ad 1)




F1 777	Plot 5	Setup Co	73 F4 e11 Head	der Calo	Utils	f7 tat
DATA	V	Golf	Audi	Ford	BD200	
	c1	c2	c3	c4	c5	
1	30	3	4.6	4.6	6.01	
2 3	40	3.05	4.64	4.64	6.09	
3	50	3.2	4.75	4.78	6.25	
4 5	60	3.44	4.93	5	6.49	
5	70	3.79	5.18	5.31	6.81	
6	80	4.23	5.51	5.71	7.21	
7	90	4.78	5.91	6.2	7.69	
r1c1=30						
MAIN		RAD AUTO		FUNC		

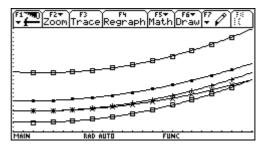




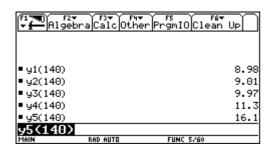


<u> </u>	main/benzinve Plot 2		
Plot To Mark	ype	Scatter+ Cross+	
×		c1 c3	
	Rocket Width eq and Categ	i	
Freedo		Of Tes: 1107	
	rg.,,,,,,,,,,, B. Categorika	C	
(Enter=	SAVE)	(ESC=CANCEL)	
MAIN	RAD AUTO	FUNC	

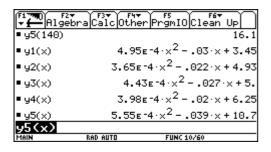
7	mainthan	zinve Plot 4	$\overline{\gamma}$
<u> </u>			_
Plot T	ype	. Scatter→	
Mark		. Square→	
×		. c1	1
y		. c5]
	Octobel Width]
	eq and Categ		_
Fredu			
	# g]
(ric lins	e Categoria	. C]
(Enter:	=SAVE)	(ESC=CANCEL)	>)
MAIN	RAD AUTO	FUNC	



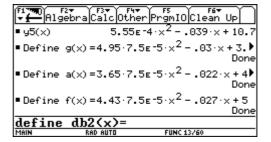
F1 7777	F1 700 Plot Setup Cell Header Calc Util Stat					
DATA	V	Golf	Audi	Ford	BD200	
	c1	c2	c3	c4	c5	
1	30	3	4.6	4.6	6.01	
2	40	3.05	4.64	4.64	6.09	
3	50	3.2	4.75	4.78	6.25	
4 5	60	3.44	4.93	5	6.49	
5	70	3.79	5.18	5.31	6.81	
6	80	4.23	5.51	5.71	7.21	
7	90	4.78	5.91	6.2	7.69	
r1c1=30						
MAIN		RAD AUTO		FUNC		


F1 790 F2
#NOTS 12345 √Plot 1: □ xc1 yc2
√y1=4.9475524475526ε-4·× ² +0297699300▶
√y2=3.6468531468534ε-4·× ² +021976923€
√y3=4.4347319347321∈-4·× ² +0265284382▶
√y4=3.9836829836831ɛ-4·x ² +019866200₄▶
√y5=5.5477855477857ε-4·x ² +0387645687▶ u6=■
y6(x)=
MAIN RAD AUTO FUNC

r main\benzinu	. Calaulah
Calculation Type	QuadReg →
×	
y	c2
Store RegEQ to	
Use Freq and Catego	o <u>ries? NO</u> →
Frequience	
自然機会のほうがいいいい	<u> </u>
🚽 (rolode Ostegorias	
(Enter=SAVE)	(ESC=CANCEL)
<u> </u>	(230 0111022)
USE + AND + TO OPEN CHOICES	


yI(x) definiert die Verbrauchsfunktion des VW Golf, y2(x) die des Audi 100 usw.

ad 2)



Wie schon im Plot erkennbar nähern sich bei höheren Geschwindigkeiten (beachte den Koeffizienten des quadratischen Gliedes) die Verbrauchswert von VW und Audi.

ad 3)


```
| Paragraphic |
```



```
Fig. Rigebra Calc Other PrgmIO Clean Up Done

Ine db4(x) =5.55·7.5ɛ-5·x² - .039·x + 107 Done

g(140) 6.53

a(140) 7.22

f(140) 7.73

adb2(140) 9.3

db4(140) 13.4

db4(140) Func 20/60
```

Wir multiplizieren in den ermittelten Funktionen das quadratische Glied jeweils mit 0,75 und betrachten die Veränderung der Verbrauchswerte. Der Audi hat (vor dem "kleineren" Mercedes) den besten *cw-Wert* (Luftwiderstand) und profitiert daher auch von einer weiteren Senkung nicht mehr so stark beispielsweise der VW oder der Ford.

ad 4)

F1740 A19	F2* F3* F4* F5 gebra Calc Other PrgmI	OClean Up
	$ag(x) = \frac{4.95e^{-4} \cdot x^2}{y1(x)}$	Done
■ Define	$aa(x) = \frac{3.65e^{-4} \cdot x^2}{92(x)}$	Done
■ Define	$af(x) = \frac{4.43e^{-4} \cdot x^2}{y3(x)}$	Done
MAIN		3/60

F1700 Algebra Calc Other PromIO Clea	6₹ an Up
■ Define adb4(x) = $\frac{5.55\varepsilon - 4 \cdot x^2}{y5(x)}$	Done
■ ag(50)	.387
■ aa(50)	.192
■ af(50)	.232
■ adb2(50)	.159
■ adb4(50)	.137
adb4(50)	
MAIN RAD AUTO FUNC 10/60	

F17700 Alg	F2+ F3+ F4+ F5 gebra Calc Other PrgmIO C aa(^) y2(x)	lean Up
	$af(x) = \frac{4.43 e^{-4} \cdot x^2}{y3(x)}$	Done
	$adb2(x) = \frac{3.98e^{-4} \cdot x^2}{94(x)}$	Done
■Define	$adb4(x) = \frac{5.55\epsilon - 4 \cdot x^2}{y5(x)}$	Done
MAIN	RAD AUTO FUNC 5/6	0

	a Calc Oth	F5 ner PrgmIO Clean	
= af(50)			.232
■ adb2(50)			.159
■ adb4(50)			.137
■ ag(100)			.913
■ aa(100)			.572
■ af(100)			.654
■ adb2(100)			.483
■ adb4(100)			.45
adb4<100)		
MAIN	RAD AUTO	FUNC 15/60	

Während bei 50 km/h der Anteil des Luftwiderstands noch gering ist (je nach Gewicht und Größe des Fahrzeugs von ca. 14 bis ca. 39 Prozent Anteil), ist er für die Frage des Treibstoffverbrauchs bei 100 km/h entscheidend.