D0611c Ausarbeitung (System: Mathematica)

## ■ Beispiel 2

## **Beispieltext**

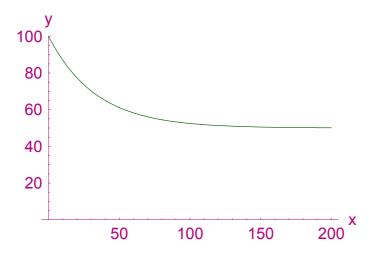
Ein Tank enthält 400 Liter Salzlösung, in der 100 kg Salz gelöst sind. Pro Minute fließen 12 Liter einer Salzlösung, die 1/8 kg Salz auf 1 Liter enthält, in den Tank, und die Mischung, die durch ständiges Rühren gleichmäßig gehalten wird, fließt mit der gleichen Geschwindigkeit aus. Bestimme die Salzmenge im Tank nach 90 Minuten!

## Lösungsvorschlag

Es sei y die Menge Salz in kg, die der Tank nach x Minuten enthält.

Je Minute fließen  $12 * \frac{1}{8} = 1.5 \text{ kg Salz zu.}$ 

Je Minute fließen  $\frac{12}{400}$  y = 0.03 y Salz ab.


Für die Differentialgleichung setzen wir an:

Lösung mit **DSolve** (Anfangsbedingung: y[0] = 100)

DSolve[{diffg12, y[0] == 100}, y[x], x] { {
$$y[x] \rightarrow e^{-0.03x} (50. + 50. e^{0.03x})$$
 }}   
y[x\_] =  $e^{-0.03^{x}} (50.^{x} + 50.^{x})$  // Simplify 50.  $(1 + e^{-0.03x})$ 

Darstellung der Funktion:

$$Plot[y[x], \{x, 0, 200\}, PlotRange \rightarrow \{0, 100\}];$$



Berechnung der Salzmenge nach 90 Minuten:

Nach 90 Minuten sind 53,36 kg Salz in der Lösung enthalten.