BspNr: D0510

Themenbereich					
Wachstumsprozesse					
Ziele vorhandene Ausarbeitungen					
Besseres Verständnis von Wachstumsvorgängen	TI-92 (D0510a)				
Interpretation von Schaubildern und Funktionstermen					
Analoge Aufgabenstellungen – Übungsbeispiele					
Lehrplanbezug (Österreich):	7. oder 8. Klasse				
Quelle: Franz Hauser					

Weizen

Angabe:

Messwerte für das Längenwachstum einer bestimmten Weizensorte:

Zeit nach Beginn der Beobachtung (in Tagen)	0	7	14	21	28	35	42	49	56	63	70	77
Gemessene Höhe (in cm)	19,01	23,00	32,40	43,10	59,82	75,39	89,79	94,72	100,23	100,93	100,98	101,25

Fragen:

- a) Bestimme an Hand des Schaubilds die Höhe nach 60 Tagen seit Beginn der Messungen, die mittlere tägliche Zunahme der Höhe in den ersten 40 Tagen seit Beginn der Messungen, wann die Höhe am schnellsten zunimmt und die maximale Wachstumsgeschwindigkeit der Höhe (in cm pro Tag)
- b) Aus dem Schaubild erkennt man, dass es sich um ein logistisches Wachstum handelt.

Dies läßt sich recht gut durch den Term
$$h(t) = \frac{a \cdot g}{a + (g - a) \cdot e^{-k \cdot t}}$$
 beschreiben.

Dabei ist h(t) die Höhe (in cm) des Weizens und t die Zeit (in Tagen) ab der ersten Messung $(a, g \pmod{g > a})$, k... positive reelle Zahlen).

Bestimme den Funktionsterm und beantworte die Fragen zu a).
Zeige, dass logistisches Wachstum in der Anfangsphase durch exponentielles Wachstum und in der Endphase durch begrenztes Wachstum approximiert werden kann.

BspNr: D0510a

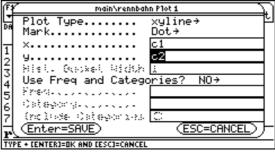
Ausarbeitung (System: TI-92)

ad a)

Eingabe der Messwerte in den Data/Matrix Editor

F1 777	Plot	Setup C	3 F4 e11 Head	der Cal	cUtils	tat
DATA						
	c1	c2	c3	c4	c5]
1	0	19.01]
2	7	23]
3	14	32.4]
4	21	43.1				
5	28 35	59.82]
6	35	75.39]
7	42	89.79]
r1c	1=0					
MAIN		DEG AUTO		FUNC		

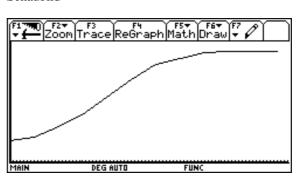
Festlegen der Plotoptionen



Windows-Koordinaten wählen

FUNC

Schaubild



Aus der Zeichnung kann man näherungsweise eine Höhe von rund 100,6 cm nach 60 Tagen ablesen. Die mittlere tägliche Zunahme der Höhe in den ersten 40 Tagen:

$$\frac{75,39+5.\frac{89,79-75,39}{7}}{40} \approx 2,14 \text{ cm}$$

DEG AUTO

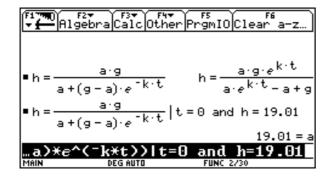
Die Höhe nimmt mit 16,72 cm in der 4. Woche am schnellsten zu, dies ergibt eine Höhenzunahme von rund 2,39 cm pro Tag.

Bestimmung des Funktionsterms durch Einsetzen dreier willkürlicher Punkte (Anfang, Mitte, Ende)

Zeit Höhe

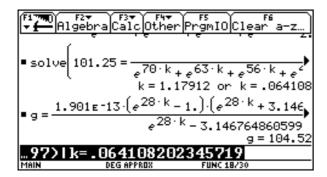
101,25

in den Term h(t) =
$$h(t) = \frac{a \cdot g}{a + (g - a) \cdot e^{-k \cdot t}}$$

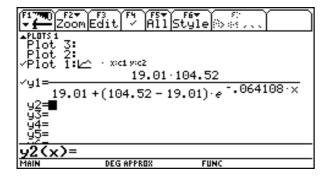


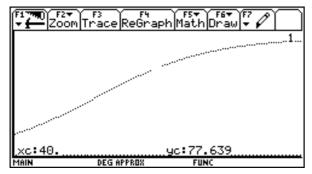
$$\begin{array}{c|c} \hline \begin{array}{c} f_1 & & \\ \hline & & \\ \hline & & \\ \hline \end{array} & \begin{array}{c} f_2 & & \\ \hline & & \\ \hline \end{array} & \begin{array}{c} f_3 & & \\ \hline \end{array} & \begin{array}{c} f_4 & & \\ \hline \end{array} & \begin{array}{c} f_5 & & \\ \hline \end{array} & \begin{array}{c} f_6 & \\ \hline \end{array} & \begin{array}{c} f_7 & \\ \hline \end{array} & \begin{array}{c} f_6 & \\ \hline \end{array} & \begin{array}{c} f_7 & \\ \hline \end{array} & \begin{array}{c}$$

1. Gleichung nach g lösen und in die zweite Gl. einsetzen



Messwerte und Funktionsterm im [Y=]-Editor





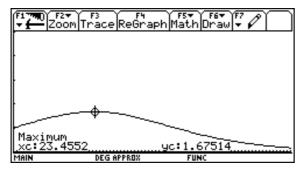
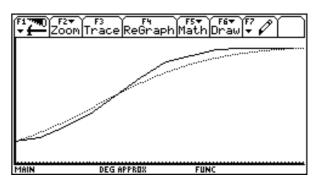


Schaubild der gemessenen Werte im Vergleich zum Funktionsgraph(punktierte Linie)



Aus der Zeichnung kann man näherungsweise eine Höhe von rund 77,6 cm nach 40 Tagen ablesen, dies ergibt eine mittlere Zunahme von 1,94 cm pro Tag.

Die Wachstumsgeschwindigkeit erhält man aus der Ableitung der Höhe nach der Zeit.

Aus dem Graph der Wachstumsgeschwindigkeit erkennt man die größte Wachstumsgeschwindigkeit am 24 Tag.

ad c)

Ein logistisches Wachstum wird durch den Term $h(t) = \frac{a \cdot g}{a + (g - a) \cdot e^{-k \cdot t}}$ beschrieben.

Näherung in der Anfangsphase:

Wir formen den Term um
$$\frac{a \cdot g}{a + (g - a) \cdot e^{-k \cdot t}} = \frac{a \cdot g}{g \cdot e^{-k \cdot t} + a \cdot (1 - e^{-k \cdot t})} = \frac{a \cdot g \cdot e^{k \cdot t}}{g + a \cdot (e^{k \cdot t} - 1)}.$$

Für kleine t gilt $e^{k \cdot t} \approx 1$ - dh. in der Anfangsphase gilt näherungsweise $h(t) \approx a \cdot e^{k \cdot t}$. Dies ist die Wachstumsformel für exponentielles Wachstum.

F1770 Alg	2▼ F3▼ F' ebra Calc Oth	r▼ F5 ner PrgmIO C1	F6 lear a-z
•h=a·e	^{k·t} t=0 and	h = 19.01	19.01 = a
1	= a · e ^{k · t} t :	= 28 and h =	59.82 an▶
■h=a·e ^l	^{k·t} a=19.01		<=.040942 09419605▶
	10 15101		(1.04179) ^t
MAIN	DEG AUTO	FUNC 3/3	0

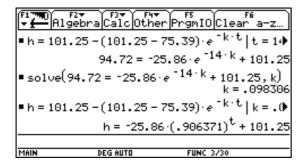
Durch Einsetzen der Wertepaare

Zeit	0	28
Höhe	19,01	59,82

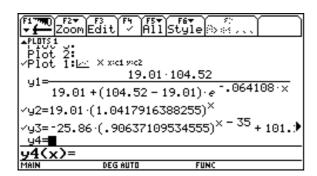
errechnen wir die Gleichung für das exponentielle Wachstum in der Anfangsphase.

Näherung in der Endphase:

Für große t nähert sich $e^{-k \cdot t}$ der Zahl 0 und somit strebt h(t) gegen den Grenzwert g.



Übertragen der Näherungsformeln in den y-Editor

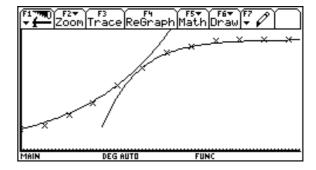


Wir verwenden die Gleichung für begrenztes Wachstum $h(t) = g - (g - a) \cdot e^{-k \cdot t}$ und berechnen nach Zeitverschiebung um 35 Tage aus

Zeit	0	14	42
Höhe)	75,39	94,72	101,25

die Gleichung für das begrenzte Wachstum in der Endphase.

Werte mit den Näherungskurven für die Anfangs- und Endphase



Die tatsächlichen Werte (Kreuze) und die Näherungskurven für die Anfangs- und Endphase wurden hier dargestellt.