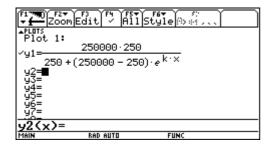
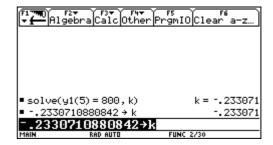
BspNr: D0419

Themenbereich Wachstumsprozesse			
Das Wesen des logistischen Wachstums kennen.	TI-92 (D0419a), DERIVE (D0419b), Mathematica (D0419c)		
 Entscheiden können, welche Wachstumsvorgänge nach dem logistischen Prinzip ablaufen 	(D04190)		
Analoge Aufgabenstellungen – Übungsbeispiele	D0410 - D0420		
Lehrplanbezug (Österreich):	6. Klasse		
Quelle: Dr. Alfred Eisler, Sonja Reitner			

Ausbreitung eine Grippeepidemie – Anwendung des logistischen Wachstums

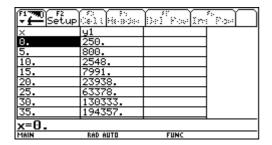
Angabe und Fragen:

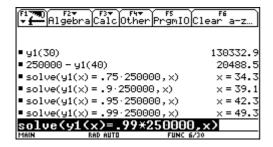

In einer Stadt mit 250000 Einwohnern/innen sei die Anzahl der Menschen, die bei Ausbruch einer Grippeepidemie bereits infiziert sind, 250. Die Grippeepidemie verläuft (näherungsweise) nach der Formel für das kontinuierliche logistische Wachstum. Nach 5 Tagen sind bereits 800 Einwohner/innen dieser Stadt infiziert.


- a) Erstelle eine algebraische Formel, die die Entwicklung der Grippeepidemie beschreibt!
- b) Erstelle eine Tabelle, die die Ausbreitung der Grippeepidemie darstellt!
- c) Wie viele Personen sind nach 30 Tagen infiziert? Wie viele Personen sind nach 40 Tagen noch nicht infiziert? Wann sind 75% der Einwohner/innen der Stadt mit Grippeviren infiziert, wann 90%, wann 95%, wann 99%?
- d) Stelle die Entwicklung der Grippeepidemie grafisch dar! Lies aus der Grafik ab, ab welchem Zeitpunkt der Zuwachs an infizierten Personen deutlich geringer wird! Worauf könnte dies zurückzuführen sein?

BspNr: D0419a

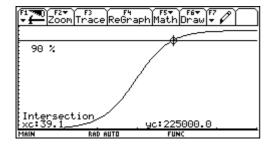
Ausarbeitung (System: TI-92)


Für die Kapazitätsgrenze G setzt man 250000, außerdem gilt n(0) = 250 und n(5) = 800. Wir verwenden die Formel für das kontinuierliche Modell.

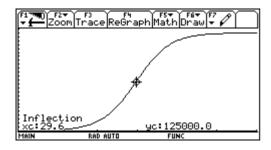

Die Funktion wird eingegeben – solve liefert uns den Parameter k. Damit ist die algebraische Formel erstellt und als y1(x) gespeichert.

Für die Tabelle wurde ein Intervall von 5 Tagen gewählt.

			$\overline{}$
Setup	Cerù t Herbidon	Del Pow In	Post
×	y1		
40.	229511.		
45.	243230.		
50.	247849.		
55.	249325.		
60.	249789.		
65.	249934.		
70.	249979.		
75.	249994.		
x=75.	•		
MAIN	RAD AUTO	FUNC	


Die Anzahl der infizierten Personen kann auch mit Hilfe der Formel berechnet werden. Im HOME Screen rechnet man dann:

Infizierte nach 30 Tagen. Nicht infizierte nach 40 Tagen.


Nach 35 Tagen sind 75%, nach 40 Tagen sind 90%, nach 43 Tagen sind 95% und nach 50 Tagen sind 99% infiziert.

Grafische Variante

Nach 40 Tagen sind 90% der Bevölkerung infiziert.

Der Zuwachs wird ab dem Wendepunkt geringer – suchen mit F5/Inflection

Wendepunkt bei 29,6 Tagen – genau dann, wenn die Hälfte infiziert ist.

Grund: Symmetrie

Medizinisch: wenn die Hälfe der Bevölkerung bereits erkrankt ist, kann nicht mehr jeder Kranke einen Gesunden anstecken bzw. die noch Gesunden werden schwerer gefunden; damit muss der Zuwachs geringer werden.

BspNr: D0419b

Ausarbeitung (System: DERIVE)

Für die Kapazitätsgrenze G setzt man 250000, außerdem gilt n(0) = 250 und n(5) = 800. Wir verwenden die Formel für das kontinuierliche Modell.

Die Parameter werden eingegeben.

```
G := 250000
n0 := 250
P(t) := \frac{G \cdot n0}{n0 + (G - n0) \cdot \hat{e}^{C \cdot t}}
```

Mit den Anfangswerten P(5) = 800 erhalten wir den Wert für c.

```
P(5) = 800

APPROX(SOLUE(P(5) = 800, c, Real))

c = -0.233071

c := -0.233071
```

Für die Tabelle wurde ein Intervall von 5 Tagen gewählt.

```
VECTOR([t, P(t)], t, 0, 80, 5)
   Ø
         250
   5
         800
       2547.65
       7990.77
 15
 20
       23938.2
       63377.5
 25
 30
       130332
 35
       194356
  40
       229511
       243229
       247848
 50
       249325
 55
       249789
 60
```

Die Anzahl der infizierten Personen kann auch mit Hilfe der Formel berechnet werden.

```
P(30) = 130332.9

G - P(40) = 20488.4

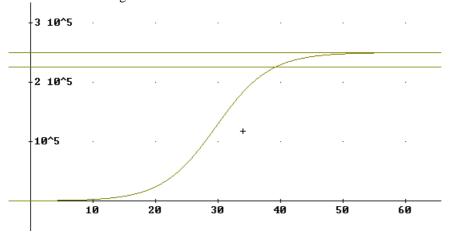
SOLUE(P(t) = 0.75·G, t, Real)

t = 34.3473

SOLUE(P(t) = 0.9·G, t, Real)

t = 39.0609

SOLUE(P(t) = 0.95·G, t, Real)


t = 42.2669

SOLUE(P(t) = 0.99·G, t, Real)

t = 49.3492
```

Nach 30 Tagen sind 130333 Personen infiziert, nach 40 Tagen sind noch ca. 34 Personen nicht infiziert. Nach 35 Tagen sind 75%, nach 39 Tagen sind 90%, nach 43 Tagen sind 95% und nach 50 Tagen sind 99% infiziert.

Grafische Darstellung

Der Zuwachs wird ab dem Wendepunkt geringer – im Wendepunkt ist die Ausbreitungsgeschwindigkeit der Seuche maximal.

Medizinisch: Wenn die Hälfe der Bevölkerung bereits erkrankt ist, kann nicht mehr jeder Kranke einen Gesunden anstecken bzw. die noch gesunden werden schwerer gefunden. Damit muss der Zuwachs geringer werden.