BspNr: A0512

Themenbereich Ellipse in Parameterdarstellung	
 Mehrere Lösungsansätze und Darstellungsmöglichkeiten kennen und anwenden können 	TI-92 (A0512a)
 Vorteile der Parameterdarstellung f ür bestimmte physikalische und geometrische Probleme erkennen 	
 Optimierungsaufgabe in Parameterdarstellung lösen können 	
Beweisen von bekannten Beziehungen	
Analoge Aufgabenstellungen – Übungsbeispiele	
Lehrplanbezug (Österreich):	7. Klasse
Quelle: Franz Hauser	

Ellipse

Angabe:

Eine Ellipse hat die Parameterdarstellung $x(t) = 5 \cos t$, $y(t) = 3 \sin t$.

Fragen:

- a) Zeichne die Ellipse mit Hilfe des TI-92 und übertrage die Zeichnung in dein Heft.
- b) Ein Punkt *P* bewegt sich nach obiger Weg-Zeitgleichung auf der Ellipse, wobei *t* die Zeit ist. Wann ist seine Geschwindigkeit maximal? Wann ist sie minimal?
- c) Es sei P der Ellipsenpunkt für $t_1 = \pi/4$. Bestimme eine Gleichung der Tangente im Punkt und berechne die Schnittpunkte der Tangente mit den Achsen.
- d) Die Brennpunkte der Ellipse sind $F_1(4/0)$ und $F_2(-4/0)$. Berechne den Winkel α , den die Vektoren \overrightarrow{PF}_1 und \overrightarrow{PF}_2 bilden

(P ist wie oben der Ellipsenpunkt für $t_1 = \pi/4$)

Bestimme die Gleichung der Winkelhalbierenden von α . Zeige, dass diese Winkelhalbierende auf der Tangente in P senkrecht steht.

e) Zeige in der Parameterdarstellung, dass für jeden Ellipsenpunkt E die Summe der Abstände von den Brennpunkten F_1 und F_2 konstant ist.

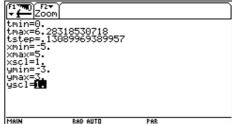
BspNr: A0512a

Ausarbeitung (System: TI-92)

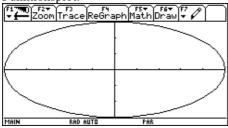
ad a)

Eingabe im Y=-Editor

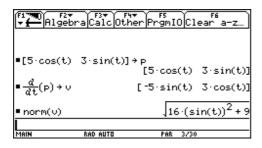
WINDOWS-Koordinaten wählen



Funktionsplot:



ad b)



Die Koordinaten eines beliebigen Punktes (5 $\cos t / 3 \sin t$) werden in P gespeichert. Der Tangentialvektor in P ist $\vec{v} = \begin{pmatrix} -5 \cdot \sin t \\ 3 \cdot \cos t \end{pmatrix}$, die

Geschwindigkeit

$$|\vec{v}| = \sqrt{25 \cdot (\sin t)^2 + 9 \cdot (\cos t)^2} = \sqrt{16 \cdot (\sin t)^2 + 9}$$
.

Berechnen der maximalen bzw. minimalen Geschwindigkeit:

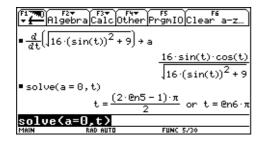
(1) ohne Differentialrechnung:

Die Geschwindigkeit in einem beliebigen Punkt $P(5 \cos t / 3 \sin t)$ ist $\sqrt{16 \cdot (\sin t)^2 + 9}$. Dieser Term nimmt den größten Wert an für $(\sin t)^2 = 1$, den kleinsten Wert für $(\sin t)^2 = 0$.

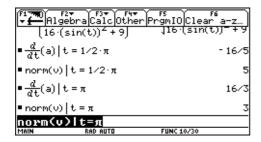
Daraus folgt: die minimale Geschwindigkeit beträgt 3 für $t = n \cdot \pi$, die maximale Geschwindigkeit 5 für

$$t = \frac{1}{2}\pi, \frac{3}{2}\pi, \dots$$

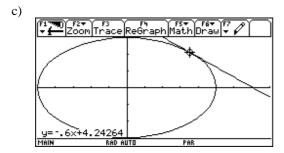
(2) mit Differentialrechnung:



Die Geschwindigkeit ist minimal bzw. maximal, wenn ihre Ableitung Null ist. Dies ist der Fall für $t=\frac{1}{2}\pi,\frac{3}{2}\pi,\dots$ oder $t=0,\pi,2\pi,\dots$



Überprüfen des Maximums bzw. Minimums mit der 2. Ableitung und Berechnung der maximalen bzw. minimalen Geschwindigkeit.

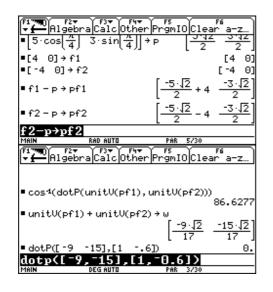


Die Gleichung der Tangente im Punkt P mit $t=\pi/4$ kann im GRAPH-Fenster abgelesen werden:

$$t_n: y = -0.6x + 4.24264$$

Daraus errechnet sich die Nullstelle der Tangente bei x = 7,071.

ad d)



Die Koordinaten der Punkte P, F_1 und F_2 werden eingegeben und gespeichert, ebenso die Vektoren $\overrightarrow{PF_1}$ und $\overrightarrow{PF_2}$.

Aus der Vektor-Winkel-Formel errechnet man den Winkel α , den die Vektoren \overrightarrow{PF}_1 und \overrightarrow{PF}_2 bilden: $\alpha \approx 86,63^\circ$. Einen Vektor \vec{w} in Richtung der Winkelsymmetralen erhält man

Mit Hilfe des Orthogonalitätskriteriums wird gezeigt, dass \vec{w} auf den Richtungsvektor der Tangente normal steht.

durch Vektoraddition der Einheitsvektoren von \overrightarrow{PF}_1 und \overrightarrow{PF}_2 .

ad e)
Es ist
$$\overrightarrow{PF_1} = \begin{pmatrix} 4-5 \cdot \cos t \\ -3 \cdot \sin t \end{pmatrix}$$
 und $\overrightarrow{PF_2} = \begin{pmatrix} -4-5 \cdot \cos t \\ -3 \cdot \sin t \end{pmatrix}$.
$$|\overrightarrow{PF_1}| + |\overrightarrow{PF_2}| = \sqrt{(4-5 \cdot \cos t)^2 + (-3 \cdot \sin t)^2} + \sqrt{(-4-5 \cdot \cos t)^2 + (-3 \cdot \sin t)^2} =$$

$$= \sqrt{16-40 \cdot \cos t + 25 \cdot \cos^2 t + 9 \cdot \sin^2 t} + \sqrt{16+40 \cdot \cos t + 25 \cdot \cos^2 t + 9 \cdot \sin^2 t} =$$

$$= \sqrt{16-40 \cdot \cos t + 16 \cdot \cos^2 t + 9} + \sqrt{16+40 \cdot \cos t + 16 \cdot \cos^2 t + 9} =$$

$$= \sqrt{25-40 \cdot \cos t + 16 \cdot \cos^2 t} + \sqrt{25+40 \cdot \cos t + 16 \cdot \cos^2 t} =$$

$$= \sqrt{(5-4 \cdot \cos t)^2} + \sqrt{(5+4 \cdot \cos t)^2} = (5-4 \cdot \cos t) + (5+4 \cdot \cos t) = 10 = 2a$$