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Abstract
A classical approach to multi-valued Logics, based on the use of

truth-tables, can be easily implemented in a CAS (DERIVE 4 in this
case). Truth-tables are very laborious but many intuitive ideas come
from working with them. We presented at the 1st International De-
rive Conference (Plymouth, 1994) an approach to the Boolean case in

DERIVE 2, that was published in The International DERIVE Journal
[3]. But the next DERIVE 3 included a built-in function for the same
purpose.
An obvious extension is to construct truth-tables in multi-valued

logics. This programme deals with Kleene’s style (min/max) p-valued

Logic with modal connectives (for any given prime number p), and it
can:

i) Build the truth-table corresponding to two given propositions.

ii) Check if a given proposition is a tautology.

iii) Check if the second of two given propositions is a tautological

consequence of the first one.

This implementation will be included within DERIVE 5. Some exer-
cises and some notes about our experience in the classroom are also

included.

∗Partially supported by the DGES research project PB96-0098-C04-03 (Spain).
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Introduction

We have developed models (implemented in Maple and CoCoA) to study
inference in propositional algebras and consistency of Knowledge Based Sys-
tems (KBSs) based on Boolean and multi-valued modal Logics [6, 7, 8, 10]
that follow the line opened by Kapur and Narendran, Hsiang, Chazarain
et al. [5, 4, 1]. These treatments are straightforward and very powerful,
but involve the calculation of Gröbner Bases of polynomial ideals over fields
of finite characteristic (what is not intuitive!) [2, 16]. A similar approach
has been used to develop a topology-independent railway interlocking system
[11].
So we think that producing a specific purpose little package that could

construct truth-tables and check tautologies and tautological consequences
using only truth-tables-derived manipulations could be useful in teaching.
An implementation in Maple is available [9] and an implementation in Mac-
syma is included within the latest versions of this CAS. The implementation
presented here is written in DERIVE 4. A classic language (Pascal, Logo,
C,...) [14] could also be used, but using a CAS makes it more simple and
straightforward.

1 Classic Propositional Bivalued Logic

The classic propositional bivalued Logic is (C,∨,∧,¬), where
i) C is the set of propositions
ii) ∨,∧ are the (basic) logical binary connectives “and” and “or”
iii) ¬ is the logical unary connective “negation”.
In a constructive way, if the propositional variables are X1, X2, ..., Xm then
C is the set of well-constructed formulae using ∨,∧,¬ and X1, X2, ..., Xm .
Although connectives are used to build C , they are usually identified with

functions C × C → C (if binary) or C → C (if unary).
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1.1 Defining the Binary Connectives

Let P,Q be any propositions. Each logical binary connective can be given
as a truth-table (i.e., as a mapping {0, 1} × {0, 1} → {0, 1})∣∣∣∣∣∣∣∣∣∣∣

P Q P ∨Q P ∧Q P → Q P ↔ Q
0 0 0 0 1 1
0 1 1 0 1 0
1 0 1 0 0 0
1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
(where 0 represents False and 1 represents True).
The function can also be given as a (discrete) set of points. For P ∨ Q:

{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)} .
And the function can also be given directly in a functional way: P and

Q can be valued in {0, 1} and
P ∨Q = max(P,Q)
P ∧Q = min(P,Q)

or in polynomial form:

P ∨Q = P +Q− P ·Q
P ∧Q = P ·Q

1.2 Defining the Unary Connectives

Let P be any proposition. ¬P can be given as a truth-table∣∣∣∣∣∣∣
P ¬P
1 0
0 1

∣∣∣∣∣∣∣
¬P can also be given as the (discrete) set of points

{(1, 0), (0, 1)} .
And ¬P can also be given in a functional or polynomial way: P can be

valued in {0, 1} and
¬P = 1− P .
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Let us observe that now that ¬ has been introduced, → and ↔ can also
be defined as follows (Kleene’s Logic):

P → Q iff ¬P ∨Q
P ↔ Q iff (P → Q) ∧ (Q→ P )

1.3 A Formal Definition

“To give values to the propositional variables that appear in a proposition” is
a bit vague. Moreover, the introduction above used an abuse in the notation
as connectives were applied both to propositions and truth-values.
They can be defined formally distinguishing between a function F̃ applied

to numbers and the logical connective F and using valuations for proposi-
tional variables that are extended to valuations of propositions. We shall not
give details here (see [9] for instance).

1.4 To Be a Tautological Consequence and To Be a

Tautology in Classic Bivalued Logic

1.4.1 Definition.- P is a tautological consequence of Q (P |= Q) iff
whenever P is True, then Q is also True.

1.4.2 Example.- Prove that P ∧Q |= P ∨Q∣∣∣∣∣∣∣∣∣∣∣

P Q P ∧Q P ∨Q
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
1.4.3 Definition.- P is a tautology (|= P ) iff P is always True.
1.4.4 Example.- Prove that |= ((P ∧Q)→ (P ∨Q))∣∣∣∣∣∣∣∣∣∣∣

P Q P ∧Q ¬(P ∧Q) P ∨Q (P ∧Q)→ (P ∨Q)
0 0 0 1 0 1
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 0 1 1

∣∣∣∣∣∣∣∣∣∣∣
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1.4.5 Theorem.- It can be proven that, in classic bivalued Logic, for any
propositions P and Q,

|= (P → Q) iff P |= Q .

2 Three-Valued Logics

An introduction to multivalued Logics can be found in [15].
Observe that DERIVE’s IF uses a three-valued Logic, as its fourth (op-

tional) argument is what to do in case it can not be evaluated whether the
condition is true or false.

2.1 Kleene’s Three-Valued Logic

In this Logic there are three truth-values: “True”, “False” and “Undecided”
that we shall represent by 1, 0 and 1

2
respectively (what has the advantage

that the greater the value the greater the certainty, what is very intuitive).
There are now two more unary connectives: “necessary” (2) and “possi-

ble” (3). ∣∣∣∣∣∣∣∣∣
P ¬P 2P 3P

0 1 0 0
1
2

1
2

0 1
1 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P Q P ∨Q P ∧Q P → Q P ↔ Q
0 0 0 0 1 1
0 1

2
1
2

0 1 1
2

0 1 1 0 1 0
1
2
0 1

2
0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
1 1 1

2
1 1

2

1 0 1 0 0 0
1 1

2
1 1

2
1
2

1
2

1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Observe that the polynomial forms change depending on the number of

truth-values of the Logic.
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“Implies” can also be defined as in classic bivalued Logic

(P → Q) iff (¬P ∨Q) .

2.2 Lukasiewicz’s Three-Valued Logic

Let us represent “True” by 1, “False” by 0 and “Indeterminate” by 1
2
.

Lukasiewicz’s connectives and Kleene’s differs only in the conditional and
biconditional (check the fith row)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P Q P →Lu Q P ↔Lu Q
0 0 1 1
0 1

2
1 1

2

0 1 1 0
1
2
0 1

2
1
2

1
2

1
2

1 1
1
2
1 1 1

2

1 0 0 0
1 1

2
1
2

1
2

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A polynomial form of Lukasiewicz’s →Lu is

P →Lu Q = 4P 2Q2 − 4P 2Q− 4PQ2 + 5PQ− P + 1
and it is clear that

P ↔Lu Q = (P →Lu Q) ∧ (Q→Lu P ) .
An example of the use of this Logic is [12], where an algebraic model for

a certain set of Medical Appropriateness Criteria (including uncertainty) is
constructed.

3 Multi-Valued Propositional Logics

3.1 Introducing Multi-Valued Propositional Logics

Let p be a prime number. A p-valued propositional Logic is (C, F1, ..., Fn),
where
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i) C is the set of propositions
ii) F1, ..., Fn are the logical connectives (unary or binary).

If the propositional variables are X1, X2, ..., Xm , then C is the set of well-
constructed formulas using F1, ..., Fn and X1, X2, ..., Xm .

3.2 Defining the Connectives

We shall consider the truth-values to be {0, 1
p−1 ,

2
p−1 , ...,

p−2
p−1 , 1} for 0 rep-

resenting False, 1 representing True and intermediate values representing
intermediate degrees of certainty.
The logical connectives can be then defined

P ∨Q = max(P,Q)
P ∧Q = min(P,Q)
¬P = 1− P .

(¬ tries to translate the idea of reversing the “probability” of something to
happen).
The two modal connectives, necessary (2) and possible (3) are valued,

respectively, 0 unless the proposition is True and 1 unless the proposition is
false. Therefore, they can be expressed as follows

2P = floor(P )

3P = 1− floor(1− P ) .
It is clear that this model is ready to be implemented very easily.

3.3 To be a Tautological Consequence and To Be a

Tautology in Multi-Valued Logics

3.3.1 Theorem.- In the general case of p-valued Logics (p > 2) it can only
be proven that, for any propositions P and Q,

|= (P → Q) ⇒ P |= Q .
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Adding certain conditions it can be proven that,

|= (2P → Q) ⇔ P |= Q
(see [10] and the examples in §5).

Therefore, the behaviour is no longer intuitive. We think it would be a
great help to have available a “Logic calculator” to explore these Logics.

4 Implementation in DERIVE 4

Connectives are defined below as DERIVE functions. They begin with an
“M” (standing for “multivalued”), not to interfere with the built-in boolean
connectives.

MNEG(a_) := 1-a_

MPOS(a_) := 1-FLOOR(1-a_)

MNEC(a_) := FLOOR(a_)

MOR(a_,b_) := MAX(a_,b_)

MAND(a_,b_) := MIN(a_,b_)

Conditional and biconditional (Kleene-style) can be defined using the
previous connectives:

MIMP(a_,b_) := MOR( MNEG(a_) , b_ )

MIFF(a_,b_) := MAND( MIMP(a_,b_) , MIMP(b_,a_) )

Tautology and contradiction are respectively denoted t and c and are
respectively assigned to the constants 1 and 0:

t:=1

c:=0

4.1 Constructing Truth-Tables

The number of truth-values is assigned to the global variable w, e.g.:

w:=3
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A truth-table corresponding to propositions including m propositional
variables in a w-valued Logic will have wm rows.
The elements in the truth-tables corresponding to the propositional vari-

ables can be organized as follows (w = 3, m = 2):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 ...
1
2
0 ...

1 0 ...
0 1

2
...

1
2

1
2
...

1 1
2
...

0 1 ...
1
2
1 ...

1 1 ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let us suppose that the propositional variables are the first m in vp:=[p,

q,r,s,u,v]. In the general case of a truth-table corresponding to proposi-
tions including m propositional variables in a w-valued Logic will have wm

rows. The values given to the first propositional variables can be loops of:

0, 1
w
, 2
w
, ..., w−1

w
, 1

those given to the second propositional variables can be loops of:

0, 0,
w︸︷︷︸... , 0, 1

w
, 1
w
,
w︸︷︷︸... , 1

w
, 2
w
, 2
w
,
w︸︷︷︸... , 2

w
, ...,

w−1
w
, w−1
w
,
w︸︷︷︸... , w−1

w
, 1, 1,

w︸︷︷︸... , 1
those given to the third propositional variables can be loops of:

0, 0,
w2︸︷︷︸... , 0, 1

w
, 1
w
,
w2︸︷︷︸... , 1

w
, 2
w
, 2
w
,
w2︸︷︷︸... , 2

w
, ...,

w−1
w
, w−1
w
,
w2︸︷︷︸... , w−1

w
, 1, 1,

w2︸︷︷︸... , 1
...
If j is the number of the row, this can be obtained in DERIVE the

following way:

p:=(1/(w-1))*MOD(FLOOR(j_/w^0),w)

q:=(1/(w-1))*MOD(FLOOR(j_/w^1),w)
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r:=(1/(w-1))*MOD(FLOOR(j_/w^2),w)

s:=(1/(w-1))*MOD(FLOOR(j_/w^3),w)

u:=(1/(w-1))*MOD(FLOOR(j_/w^4),w)

v:=(1/(w-1))*MOD(FLOOR(j_/w^5),w)

...

Then the main procedure TT constructs the truth-table:

TT(m_,a_,b_):=

VECTOR( APPEND(VECTOR(vp SUB i_,i_,1,m_),[a_,b_]), j_,0,w^m_-1)

which entries are:

i) m is the number of different propositional variables that appear in a
together with b (that must be the first m in vp).

ii) a and b are the formulae which truth-table has to be calculated.

Observe that the
APPEND(VECTOR(vp SUB i ,i ,1,m ),[a ,b ])

just constructs the (row) vector of the m first propositional variables in vp
followed by a and b . Then a matrix is constructed by the “VECTOR” outside
by stacking this row vectors upon each others when giving to j the values 0
to wm−1. Observe that the elements in vp are functions in the only variable
j and a and b are functions of the variables in vp, so this is a numerical
matrix.

4.1.1 Example.-
w:=3

TT( 3, MAND(P,MAND(Q,R)), MAND(MAND(P,Q),R) )=
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
1
2
0 0 0 0

1 0 0 0 0
0 1

2
0 0 0

1
2

1
2
0 0 0

1 1
2
0 0 0

0 1 0 0 0
1
2
1 0 0 0

1 1 0 0 0
0 0 1

2
0 0

1
2
0 1

2
0 0

1 0 1
2
0 0

0 1
2

1
2
0 0

1
2

1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

... ... ... ... ...

... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
4.2 Checking Tautologies

Instead of constructing the truth-table, ISTAUT calculates the product of all
the truth-values of the column corresponding to a and checks if it is 1 or
not, answering 1 (YES) or 0 (NO):

ISTAUT(m_,a_):= if( PRODUCT(a_,j_,0,w^m_-1) = 1 , 1 , 0 )

4.2.1 Example.-
w:=5

ISTAUT(1, MIFF( MNEG(MPOS(Q)) , MNEC(MNEG(Q)) ) =

1

4.3 Checking Tautological Consequences

ISCONSTAUT checks weather b is a tautological consequence of a or not.
It is similar to ISTAUT but each new truth-value of b is multiplied iff the
truth-value corresponding to the first one is 1.
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ISCONSTAUT(m_,a_,b_):=

if( PRODUCT(IF(a_=1,b_,1),j_,0,w^m_-1) = 1 , 1 , 0 )

4.3.1 Example.-
w:=3

ISCONSTAUT(2, MAND(P,Q) , MOR(P,Q) ) =

1

5 Using the Implementation

A few exercises that show some of the possibilities of this implementation
(they try to help students in understanding the behaviour of these Logics):

1) For classic bivalued Logic: Construct the correspondent truth tables
and check weather classic bivalued Logic is a lattice or not. Remember
that the properties that have to be tested are
- Associative of ∨ and ∧.
- Commutative of ∨ and ∧.
- Cancelative of ∨ w.r.t. ∧ and of ∧ w.r.t. ∨
(as a consequence idempotency of ∨ and ∧ holds).

2) Repeat the previous exercise for Kleene’s three-valued Logic.

3) Is classic bivalued Logic a Boolean algebra? (a Boolean-algebra is a
distributive and complementary lattice). Hint: the complement of a
proposition is its negation.

4) As a consequence, the De Morgan laws hold. Check it.

5) Repeat exercise 3) for Kleene’s three-valued Logic. Try also with
NEG(POS ) instead of NEG as complement. Try to find a complement.

6) Check if in classic bivalued Logic (P ∧Q) |= (P ∨Q)
and |= (P ∧Q)→ (P ∨Q) .

7) Repeat the previous exercise for Kleene’s three-valued Logic. Test also
if P |= P and |= P → P . Try to explain what happens.

8) Consider |= 2(P ∧Q)→ (P ∨Q) instead.
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9) Repeat exercises 2), 5), 7) and 8) for Kleene’s style min/max five-valued
Logic to confirm that the same happens.

6 Educational Experience. Conclusions

I teach both at a Teacher-Training Center (School of Education) and the
School of Mathematics of the “Universidad Complutense de Madrid”. Since
1987 we have developed two builders of truth-tables for classic bivalued Logic
in Logo [14] and Derive [3] and two for multivalued Logic with modal con-
nectives in Maple and Macsyma.
They first two were used in the classroom with undergraduates studying

the subjects “Mathematics III” (where there was a lesson devoted to Lattices
and Boolean Algebras) and “Computers and Mathematics” (that introduces
programming and some educational programmes to students). The attitude
of the students was very positive, but according to the subject two attitudes
were usual. For the first group, the main attraction was the novelty of work-
ing with a computer and the joy of obtaining in a fast and automatic way the
result. The other group was interested in knowing “how” the implementation
was done and to compare it with their own ideas.
The generalization to multi-valued Logics was proposed by professor Luis

M. Laita (of the School of Computer Science of the “Universidad Politécnica
de Madrid”, and leader of the research group of the author) to be used with
his students of the subject “Logic”.
We always use a white-box/black-box approach:

1) Theory and hand-made examples are presented first.

2) Work is done with the computer afterwards, using it as a tool that
allows to increase the number and complexity of the examples solved.
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