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Abstract

Using Matlab/Maple for solving a system of linear interval equations Ax = b , where A, x and b are interval
matrices. It is necessary to know about interval algebra first. rather than using Matlab/Maple straightly. It is
because those software do not support interval computation. In reality , most practical work all quantities
within an interval. So interval arithmetic’s become an elegant tool in computing.

In this paper we want to compute the interval hull of the system of linear interval equations.

Many methods could be apply for this propose, but we used The interval Gauss elimination’s and will be

support by Matlab/Maple. In the end of this paper we want to compare the results.

Introductions
We assume that we know about the elementary properties of the interval arithmetic. But we can

remind some definitions and properties with the terminology Newmaier [3]

A real interval is a set of the form

x=[x,X]:={ X eR/x< X <X } closed and bounded in subset R

The open interval

Ix, x [=int(x);={ ¥ eR/x< ¥< X}



The set of all intervals is denoted by IR

x=inf(x) ; X =sup(x); X =midX):=(x +x)/2; rad(x):= (X -x)/2

Tex & | ¥- 3] <rad (%)
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|x|smag(x)smax{|)_c x|}; <x>smin{|§ )_c|}

If S is a non-empty bounded subset of R we denote by
S: =[inf (S), sup(S)], the hull of S

The order relations are antisymetris and transitive,< and > are reflexive. But two interval need

not be comparable since, e.g, [1,3] < [2,4] < [1,3]

Elementary operations ° € Q :={+,-,*,/, **} are defined on the set of interval by putting

x°y;= {X°y/Xex, yey}={X°y/ Xex, yey}
Forall x, y e IR such that X °V is defined forall Xex, yey

This restricts the definition of the division x/y, to interval y with 0 ¢ y. Similarly, the exponential
x**y is restricted to one of the cases: (I) x > 0, (i) x>0, y > 0 (iii) 0 ¢ x, y an integer < 0

or (iv) y a positive integer
If Ae IR™ is a regular interval matrix, we define a matrix inverse of A by :

AT = { AT AeA} (1)
Thatis A™'is the smallest interva' matrix that contains the set{ A™': Ag A}
We call an interval matrix A inverse positive if A is regular and A-1>0
An nxn interval matrix A is called an M-matrix if and only if A; <0 for all i=j , and Au > 0 for

some positive vector u £ IR"



We use <A> to denote the Ostrowski's comparison matrix of A, with entries <A>; = <A;>,
<A>j = - | Ayl for izk, thus <A> has non negative diagonal elementsand nonpositive off-
diagonal elements. We call A an H-matrix if and only if its comparasion matrix <A> in an M-
matrix [4 ]

From Kuttler [ 4 ] we get :

Proposition 1.

letA = [A, AleIR™ . IfA,and A areregularand A*>0, A!>0 then A is regular and

Al=[ Al,AY1>0 (1)

It is known that every M-matrix is inverse positive, that why we can compute A, if A is an M-
matrix.
Suppose that A £ IR" is a regular interval matrix and b € IR". So the solution set of interval
systemAx =b,

Y (Ab)={xelR":Ax =bforsome AcA,beb} (2)

In Neumaeir [4 ], it is known that the hull A" b of (2), the smallest interval vector that contains
Y(A,b), satisfies :

A'b = {x:ID| =1, inf(D(Axp — b)) = 0 } (3)
From now on the quantity A" b = the hull (3) requires solution of inf (D(A Xo — b)) =0  (4)
where D ranges over all D with |D]| =1

S. Ning and R.B Kear Folt [ 4] have a method to compute the exact hull of Ax = b, when A is

centered about a diagonal matrix. And also how to compute those hull when A is inverse positive.

The base of their computing is :



THEOREM 1 (Beeck [4])
Let A e IR™" be inverse positive then
A'b=[(AY)D, (A2 b]=[x X]

where AV, A? are defined by

AL = A if x> 0 and AP = Ay otherwise,

(4)
A® = A if xi< 0and AP = Ay otherwise.
In particular
[A b,A"D]  if  b20
Ab=A'B=4{[A"D,Ab if Oeb
[A"b,A"b  if  b<O
In [2], Hansen proposed a scheme to estimate the hull of a preconditions linear system .
Suppose that :
A=A +[-1,1]rad (A)¢e IR™ andb=[ b,b] ¢ IR"
Consider the equation : Ax = b (5)
A =mid (A)
Multiply on the left by A we obtain the preconditioned equation
AAx=A'b=>Mx=r (6)
Theorem Hansen [2]
Suppose M = [ Ai]\_l ] of (60 satisfies M > (7)
x, orj =1
et 0= _ m o Jew=lo (®)
max{-r,r;} for Jj#1, j=12,.n
_ 7 for — j=i
=4 . - . : 9)
mln{r_i —ri} for j#i, j=12,.n
1
= ————— (10)



Then the hull of (6) is

M =[x, x ]
for
cieiM_lt(” for
Xi= L
= e M~'t? for

Xi
X,

>0

(11)

(12)

fori=1,2, .., nwhen e is unit vector whose i" coordinate is one and zero else where.

By Rohn [4 ] thereis a
THEOREM

Assume M is inverse positive. Then hull of (6) is MH}/ =[x x_] where

_lzmm{%qx}

-1 ~ ~
where X; =—Xx, *+\M L(r+|r|

where 1, the mid point vector, is that vector whose ith component is 7

et

(13)

(14)

(15)

(16)

(17)

(18)



THE THEORY

In Gauss elimination the main concept for solving the e.g. Ax = b is to decompose A = LU.

By Fiedler and Pta'k [4] , there is a

LEMMA

Suppose that A € R" is an M matrix and A = LU where L is lower triangular and U is upper

triangular, and L;; = I fori = 1,2,...,n. Then

Uij = Aij — LikUkj forj > (19)
[=
j-1
Alj - kz_:‘ LikUkj
L, = [} fori> j (20)

and Uii >0, Uji <0, Lij <0 Jfori2 j . thatis the triangular factors of

an M-matrix are M-matrices themselves.

THEOREM (from Bartk & Beck [4])

Suppose that A = [A, A_] € R™ is an interval M-matrix. L = [L, E] be that lower

triangular interval matrix with L; = [I,1] for i = 1,2,..., nandlet U = [U, (7] be that

upper triangular interval matrix defined by

i—1
U,=A,->, LU,  forj>i 21)
k=1



L. = = fori > j

ThenA Cc LU, A =LU and A = L l_/,' L & U are interval M-matrices. A’ = L
'U' thatis, [ AT, A']=[ U, U'][ L, L"]. Moreover

H e e T T
A"bcU (L'b)=[A ,A b (22)

This following theorem helps us to obtain the interval hull easily when A is inverse positive.

THEOREM 2

Suppose A € R™" is inverse positive and suppose that b, +” e R" and A"b =XV, For

i k=12,..., n defineA” A? € Apy

. 0 .
AL = Ay if x>0 and AV =A, otherwise

— . —(0) .
A: = Au if xi <0 and AP =A, otherwise

Define
X = {(A(]))_]b, (A(Z))'] b_}
= ([x1, Xi]heor[X X))

where {v,w} is the interval hull of the vector v and w, i.e., the smallest vector that contains the

set {v, w}. Thenx C Afp C P

In particular, if )_ckgk(w >0and x; xk(o) >0fork = 1,2, ..., nthen

x={A" ) 5.(4%) b }= A"

Proof in [ 4].



Implementation

The following examples illustrate the cases covered in the theory of the preceding sections and
examine several cases outside this theory.

the computations in the examples were programmed in Matlab and Maple. This arithmetic was
accessed with a modification in Maple and Matlab. The end points of interval in the results are

rounded using the default conversion routines in printing function Maple and Matlab.

We have 4 examples , which were computed by Gaussian Elimination’s and Hansen technique

supported by Maple and Matlab

If we see the results below, we can examine that the results supporting by Maple/Maple almost
the same.

But the results with different method not quite the same , sometimes Gauss Elimination’s gives
sharper bounds on the hull, while in other cases Hansen’s technique does. In some problems, the
intersection of the results of Gauss Elimination’s and Hansen’s in narrower than either result

takes separately.



Matrix

Gauss Elimination

Hansen Technique

Maple Matlab Maple MatLab

[07.13] [-03,03] [-03,03
A=|[-03,03] [07.13] [-03,03] [-70.10576926, 49.91346155] [-70.10576923, 49.91346154] [-101.0000000, 17.00000000] [-101 , 17]
03,03 [03,03 [07.13] [-44.81250002, 70.52884616] | [-44.81250000, 70.52884615] | [-15.00000000, 99.00000000] [-15 , 99]
[-63.00000003, 58.50000003] [-63.00000000, 58.50000000] [-90.00000000, 90.00000000] [-90 , 90]

b =

[c14,-7
[9.12]
[-3.3]

[37.43] [-15.05]  [0.0]
A= [[—1.5,—0.5] [3.7,43] [—1.5,0.5]}
[0,0] [F15.-05] [37.43]

b =

[-14 14
[-9.9]
[-3.3]

[-6.377672560, 6.377672560]
[-6.398258981, 6.398258981]
[-3.404699587, 3.404699587]

[-6.377672558, 6.377672558]
[-6.398258977, 6.398258977]
[-3.404699585, 3.404699585]

[-6.377672562, 6.377672562]
[-6.398258979, 6.398258979]
[-3.404699587, 3.404699587]

[ -6.377672558 , 6.377672558 ]
[ -6.398258977, 6.398258977 ]
[ -3.404699585 , 3.404699585 ]

A=

1517 [-3,301 [-3,301] [-3,30]

[-.6852706317, .5003751456]
[-.5629445672, .9298723089]
[-.4505833838, .8504468415]
[.2485362122, 1.160108185]

[-0.685270632, 0.500375146]
[-0.562944567 , 0.929872309]
[-0.450583384 , 0.850446842]
[ 0.248536212 , 1.160108185]

[-1.066738815, .3918622847]
[-.9017754418, .9854864361]
[-.7615187127, .9299308809]
[.2441198166 , 1.263264214]

[-1.066738815, .3918622848 ]
[-.9017754421, 9854864363 ]
[-7615187126 , .9299308808 ]
[ 2441198169 , 1.2632642141 ]

[33.301 [1517 [-3.299 [-3.299
32,299 [-3,299 [1517 [-3,301]]
3,301 [-3301 [-3.299 [1517
[-6,-2

[-4.5]

[-2.4]

| [8.10]

[4.6] [-11] [11] [Fu1]
[F11] [Fe6.4] [F11] [-11]
-1 [1,1] [9.11] [-11]
[-11] [11] [F11] [-11,9]
[-2.4]

[1.8]

[-4.10]

[2.12]

[-1.306353150, 1.239818594]
[-2.002473053, 2.762874889]
[-.8336113576, 1.186575964]
[-1.241632653, 1.601895735]

[-1.306353150, 1.239818594]
[-2.002473052, 2.762874889]
[-0.833611358, 1.186575964]
[-1.241632653, 1.601895735]

[.0776978414 , .3913669070]
[1.985611510, .1510791365]
[-.1438848919, .7956834529]
[1.244604317 , .3165467626]

[ .0776978417 , .3913669065 ]
[ 1.9856115108 , 1510791367 ]
[ -.1438848921, .7956834532 ]
[ 1.2446043165 , 3165467626 ]
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