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Differential equations  as a teaching topic in school?

1. Introduction

Physics teachers have treated already ordinary differential equations in their lessons before

computer algebra was available. They did so for good reasons.

1. Finding and solving diffential equations is one of the most powerful tools  of physisists in

order to understand physical processes, to discover their laws and to make predictions.

2. Many physical laws are formulated as differential equations, e.g. the Newton’s second

law, the law of induction, the wave equation or the Schrödinger equation.

High school students in high schools are neither supposed to know the theory of differential

equations nor are they taught to solve the equations. They need help from a teacher who

suggest very often a function as a purported solution and asks to verify the claim. When a

CAS  is used the computer can be asked for the solution instead of the teacher. But  a CAS

can do more. It can solve differential equations also numerically. It opens the door to a variety

of  other processes in nature. Physics in school was and is essentially restricted to linear

phenomena because in general only linear problems could be solved mathematically. If a CAS

is available nobody has to distinguish between linear, nonlinear or even chaotic processes.

The numeric solver treats all kinds of ODE in the same way. It replaces the continuous

problem by a discrete substitude and operates on the latter by iterative processes starting from

the initial condition.

In order to introduce ordinary differential equations in school the students must learn:

•  How to derive the differential equations of  physical processes.

•  How solutions of differential equation may be approximated numerically

•  How differential equation of order 2 and larger may be converted into a system of first

order differential equations

•  How to apply the tools of TI-89/92+ to obtain and process the solution of ordinary

differential equations.

I would like to show how this could be realized in physics and/or math lessons. All my

examples deal with differential equations of oscillations. I will begin with harmonic

oscillations. Then I will pass to the physical pendulum as an example of a nonlinear

oscillation. Finally chaotic oscillations are simulated.
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Exact solution of differential equations with DeSolve()

When investigating oscillations in physics lessons it makes sense to start with harmonic

oscillations. The differential equation of free undamped oscillations of e.g. a spring-mass

system is given by:

!!y
d

m
y= − ⋅ , (1)

where d is the spring constant, m the mass.

Fig. 1 Fig. 2

When the DeSolve() command is applied to equation (1) the general solution is written in

Terms of exponential functions. (second row in fig.1). Students are not used to exponential

functions with imaginary arguments at this time and therefore only solutions with

trigonometric functions for the periodic motion are applicable. This can be produced by

means of the „with“  operator as it can be seen in row 3 of fig.1. A particular solution is

achieved when the initial or boundary conditions are added to the „DeSolve()“ command (row

3 and 4 in fig.2). One can proof easily that the function y in fig.2 is a solution of (1) by the

operations shown in fig.3.

Fig. 3 Fig. 4

From the solution

y y
d

m
t= ⋅ ⋅0 cos( ) (2)

the basic properties of the harmonic oscillations can be deduced in class.
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Adding a friction force proportional to the velocity to equation (1),

!! !y
d

m
y

m
y= − ⋅ − ⋅

β
, (3)

then again a solution with exponential functions  appear (fig.4, first row) which in this case

cannot be written in terms of trigonometric functions. In school therefore only solutions with

defined parameters y0, d and m may be studied. The result is shown in the last row of fig.4.

Numerical solutions of differential equations

The numerical solution of differential equations is gotten by solving the corresponding

difference equations by iterations starting from an initial or boundary value. Only first order

differential equations can be converted into difference equations. For that reason differential

equations of order 2 or higher must be transformed into a system of first order equations. This

formal transformation of a second order differential equations !! ( , , !, ( ))y f x y y g t= can be done

by replacing y  by y1  and  !y  by y2 which yields:          
y y

y f t y y g t

1 2

2 1 2

′ =
′ = ( , , , ( ))

.

This formal process does not spark students imagination. For them it is easier to  express e.g.

the equation (3) as  an equation for velocity v, a well known quantity, by using !y v=  and

!! !y v= . Then the system of first order equations defines the velocity and the derivative of

velocity.

!

!

y v

v
d

m
y

m
v

=

= − ⋅ − ⋅
β

The geometric picture of the phase space might be helpful conceptually, because it reduces

the solution of an ODE to the passage from the description of a flow given by a vector field to

a flow  in terms of appropriately parametrized streamlines on the same field.

TI-92 needs the variable y1  and y2  instead of y  and v and one has to type at the  Y=Editor:

y y

y
d

m
y

m
y

1 2

2 1 2

′ =

′ = − ⋅ − ⋅
β . (4)



4

One  has the choice to solve the system

aproximately by using the Euler or the Runge-Kutta

method. Specially the Euler method is very critical

with respect to the step width of the discretization.

If it is too large an exponentially increasing

function is obtained as a solution of (3) what is

definitely wrong.  In order to make sure that a

reasonable approximation is reached with the

Runge-Kutta method the numerical and the exact

solution of equation 3 is displayed in fig.5.

Fig. 5

There are no obvious differences between the approximation and the exact solution.

Beside the harmonic oscillations it is important to discuss also oscillations which are

nonharmonic.

The physical pendulum with large angular displacements is an

often cited example because the experiment is easy to realize.

In the demonstrated experiment the angle of a swinging bar is

measured by means of a potentiometer at the axis of rotation as

it can be seen in the sketch in fig.6. The voltage at the

potentiometer is recorded by means of the computer based

analog digital converter CBL.

The data are displayed with repect to time in fig.7. The angle at

the cursor position is 160°. It is obvious that the period of the

oscillation decreases with decreasing angular displacement. Fig. 6

Fig. 7 Fig. 8

By using the „Trace“ option of the TI-92+ the period can be calculated from the positions of

the maxima and minima. In fig.8 the data of the CBL are loaded in a table, the first columns

show time and angle. In column 5 the angular velocity is calculated. Applying the „Shift()“
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command to the data in column 2 the shifted angles ϕ i+1  (column 3) and ϕ i−1  (column 4) are

listed. From these columns the angular velocity

!ϕ
ϕ ϕ

=
−+ −i

t
i i1 1

∆

can be determined numerically (column 5). This allows to display the phase portrait of the

oscillation (fig 9). On the right hand side of the graph the angles can only be 160° at

maximum because the potentiometer only covers a range of 160°.

Fig. 9

The nature of the pendulum can be investigated more thoroughly when the solutions  of the

differential equation are considerered for different cases. The differential equation of the

physical pendulum with a friction force proportional to the angular velocity is given by:

!! sin !ϕ ϕ
β

ϕ= −
⋅ ⋅

⋅ − ⋅
m g s

J J
. (5)

where first the term describes the torque of the bar and the second the friction force. In order

to study the relation between the period of oscillation and the anglular displacement, equation

5 has been solved for β = 0. The results are shown in fig.10 to 12.

Fig. 10 Fig. 11

Fig. 12
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For initial angles exceeding 90° it is obvious that the oscillation is not sinusoidal. Also the

oscillation period clearly depends on the amplitude. For angles below 45°  the rate of change

is smaller as it is shown in fig.11 and fig.12 where the region near the zero on the t-axis is

enlarged displayed. The relation between frequency and displacement  can be investigated

qualitatively from these graphs. Finally the observed oscillation of fig.7 is modeled by the

differential equation 5. The damped oscillation is displayed in fig.13.

Fig. 13

The last oscillator which is to be investigated here is a rotational pendulum with an unbalance.

The swinging wheel in fig.14 has two stable states. When it is exited by a periodical force it

has 3 degrees of fredom and it may therefore exhibit chaotic oscillations. Therefore it is one

of those elementary experiments to illustrate deterministic chaos.

Fig. 14

The differential equation is also well known and can be solve by the ode solver of TI-89/92+.

The according differential equation is :

!! ( sin ) sin ! !ϕ ϕ ϕ ω ϕ ϕ ϕ= − − ⋅ +
⋅ ⋅

⋅ − − ⋅ ⋅
D

J
t

m g r

J
k sign k Ie e

0
1 2

2 . (6)
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Here the first term of right side of the equation describes the driving force of the oscillation.

The second term is the torque of the unbalance. The last two term give the constant friction

force and a friction force proportional to the angular velocity which depends on the variable

current through the damping magnet.

Fig. 15 Fig. 16

Fig. 15 and 16 demonstrates the bifurcation scenario for different currents I. In fig.17 chaotic

motion is displayed  versus time and fig.18 shows then corresponding phase portrait.

Fig. 17 Fig. 18

4. Conclusion

I tried to give you an idea what can be done with the differential equation solvers, DeSolve()

and the numeric solver of the TI calculators.

The introduction of a CAS in schools gives the chance to add new topics to the classical

curriculum in mathematics and physics because students spend less time with numerical work.

It is possible now to model real world processes by solving differential equations in math or

physics lessons. Is it also worthwhile to do?


