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V. Mechanics of Charged Particles 

 

The Mechanics of a Charge in Electric, Magnetic and Quasi-stationary  
Electromagnetic Field 

Introduction 

In the majority of problems related to the mechanics of electrically charged particles in quasi-
stationary electromagnetic fields it is sufficient to take into account the action of the forces 

( ),F q E q v B  
  

 

where:  q - the charge of a particle, 

 E


- the vector of the electrical field strength, 

 v


 - the velocity of the particle, 

 B


 - the vector of the magnetic field. 

The first term results form the interaction of the charge with the electric field, the second one – the 
Lorentz force – acts upon a charge moving within a magnetic field. Charge and mass are inseparable. 
However, we will only deal with problems with negligible gravitational force in relation to the 
electromagnetic force. 

In the examples considered, it will be assumed that the velocity of a particle is not large. Thus, we can 
ignore relativistic effects. 

 

 

 

All files are available on request. 

 

nojo.boehm@pgv.at 

leon.magiera@wp.pl 
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PROBLEMS 

V.1 Find the path of a particle of mass m and charge q moving in a constant and uniform electric 

field of strength .E


  

 The initial conditions are: position 0 (0,0,0)r 


 and velocity 0 0( , ,0).x yv v v


 

 
Solution: 

The electric force acting on a particle is given by 

.F q E
 

 

According Newton's equation we obtain 
2

2
,

d r
m mr q E

dt
 
   

where r


 is the position vector of mass m. 

We enter the position vector and the field vector followed by the definition of the system of 
coordinates as given in Fig. V.1 and the velocity vector. 

 
Fig. V.1 

 

Newton's equation in vector notation has the form 

 

Let's extract all its components: 
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The above simple differential equations can be solved "by hand", however we apply computer algebra. 

As the solutions of equations dex2 and dez2 are trivial, we present only solution methods for 

equation dey2. 

 
Method 1:  

Using integration twice. 

 

It can easily be seen that constant %c1 means the initial velocity component v0y. We perform the 
appropriate substitution and integrate the second time. 

 

As the y-component of the initial position vector is zero we substitute again and receive y(t). 

 

 

Method 2:  

Applying ode2 to get the general solution first followed by ic2 to obtain the particular solution. 

 

Method 3:  

Applying desolve to find the general solution for all DEs followed by atvalue to obtain the 

particular solutions. 
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The obtained result indicates that the motion of the charged particle lies within the xy-plane. In order 
to get the relation describing the trajectory of the particle in explicit form we try to eliminate the time 
parameter t from the above equations for x(t) and y(t). 

 

We rewrite the result as function depending on x, q and . 

 

Let's enter a set of parameter values for plotting some trajectories: 

 

 

We recognize the trajectories as parabolas and plot for q =  1 and ,0,
4 4

     (which is the angle 

of the original direction of motion with the positive x-axis). 

 

 

You can find the graphs of the trajectories on the next page. 
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It is no problem to perform methods 1 and 2 working with DERIVE and TI-NspireCAS as well. 
Both systems don't provide an appropriate tool like presented in %i18 and %i19 above. 
MATHEMATICA does. 

See below a possible TI-NspireCAS treatment inspired by method 3. 

 

It's a question of taste what to prefer: the "two command"-procedure of Maxima – which 
might be a bit complicated for one or the other "CASer", or the slower – but clearer from my 
point of view – "step-for-step"-procedure of TI-NspireCAS. You can see how to find the 
explicit form of the trajectories. 

■▬▬▬▬▬▬▬▬ 
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V.2 An electron of mass m and charge q is moving in a constant magnetic field.  

 The initial conditions are: position 0 (0,0,0)r 


 and velocity 0 0( , ,0).x yv v v


 

a) Calculate and analyze the trajectory of the electron. 
b) Calculate the charge-to-mass ratio q/m of the electron. 

 

Solution: 

We refer to the formula given in the introduction  

( ),F q E q v B  
  

 

In our problem is 0E 


, so we have 

( ) with ( ,0,0).F q v B B B 
  

 

 

The Maxima computation procedure follows 

 

As shown in part 1 we have to load the library "vect" in order to have the vector product available 
which must be entered by a "~" (%i16). 

 

We proceed in the same way as in problem V.1, starting with extracting the components of Newton's 
equation: 
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First we apply desolve for calculating the general solution. Then we find the particular solution and 

define the functions of the components. 

 

 

[y(t), z(t)] is the parameter representation of the projection of the path onto the yz-plane. Let's inspect 
the expressions and try to recognize the curve. 

 

Yes, it is a circle of radius 
0m v y

q B


 and centre 

0
0,0, .

m v y

q B

 
 

 
 %o14 confirms this. 

Below are numerical examples followed by their graphical representation. 
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Now we evaluate and draw the trajectories of an electron. 
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Let us evaluate the time td the electron needs to reach the observed plane which has a distance d from 
the initial yz-plane  

 

The relation between parameters for which y(td) = 0 and z(td) = 0 can be written in the following 
compact equation: 

 

There is an equivalent equation in an even simpler form: 

0 0

cos 1 2 ,k

x x

d q Bd q B
k

mv mv


 
   

 
 k arbitrary integer number. 

Comment: 

It can easily be seen %o33 that all the electrons are focused at this observed plane (Oscilloscope 
screen) for an arbitrary velocity value v0y! Consequently the initial velocity in the yz-plane has not 
even to be constant with time. 

Now we introduce in this equation the charge-to-mass ratio _
q

e m
m

  
 

. Then we solve it for e_m. 

 

Electrons are accelerated to the speed v0x by potential U which gives the equation 
2

0 .
2

xmv
eU  The 

magnetic field B is proportional to the current I: 0 .k k

n
B I

b
  We can eliminate v0x and Bk from %o35. 

 

■▬▬▬▬▬▬▬▬ 

b = length of the solenoid and n = number of its turns.
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V.3 Solve the equations of motion for a particle of mass m and electrical charge q moving in a 

spatially uniform but time varying electric field of the form 0( sin( ),0,0).E E t


  

 Take as initial conditions: 0 0( ,0,0)r x


 and velocity 0 0( ,0,0).v v


 

 

Solution: 

For solving the problem we apply again functions ode2 and ic2. The solution method was presented 

in the previous problems. 

In our case the particle moves along a straight line, therefore Newton's equation reduces to the 
following form: 

 

For illustrating the obtained solution we define x(t) as a function and substitute appropriate values for 

the parameters (E0 = 2,  = 4, q = 500, m = 3, x0 = 0.5, v0 = 6). 

 

 

■▬▬▬▬▬▬▬▬ 
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V.4 Calculate the trajectory of a particle of mass m and electrical charge q moving in a constant 

magnetic field .B


  

 At time t = 0 position and velocity of the particle are: 0 (0,0,0)r 


 and 0 0 0( ,0, ).x zv v v


 

 

Solution: 

Let us assume the co-ordinate system oriented as given in Fig. V.4. 

 
Fig. V.4 

Using such a co-ordinate system we can write the field components as follows: 

Bx = 0, By = 0, Bz = .

For the components of the initial velocity we have: 

v0x = v0 sin(),v0y = 0, v0z = v0 cos(). 

We enter the definitions of position and velocity vector and of both field vectors. 

 

We need the library vector for applying Newton's equation ( ) :
q

r v B
m

 
   

 

We substitute 
B q

m
 
  to get more comfortable expressions and then extract differential Equations 

for all components. 
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We extract differential equations for all Cartesian components: 

 

Method 1:  

By integration: Solution of DE dez2 is trivial: 

( 0) 0 and ( 0) 0z t z t v z    give %c2 = 0, %c1 = v0 cos()  z(t) = t v0 cos(). 

We proceed with calculating x(t) and y(t). 

In the first step we integrate one of the two equations dex2 or dey2, let's take the second one. Taking 

into account the initial condition (0) 0,y   it can easily be seen that constant %c3 in %o16 is equal 

zero. Therefore %o16 can be written in simpler form %o17. 

 

In the next step we insert the above derivative into equation dex2. 

 

It is interesting that ode2 does not return the correct solution, so I try desolve – and it works 
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We can substitute x'(0) and x(0) by copy and past in %o18 or we apply subst:  

 

Our next step is inserting the obtained function x(t) in expression %i17 followed by integrating to get 
function y(t): 

 

In the final step we apply initial condition y(0) = 0 to find constant %c4. Then it's easy to get the 

simplified result for y(t). 

 

 

Method 2:  

Using complex variables: 

The system of equations [dex2,dey2] can be solved in an elegant way by introducing a new 

complex variable 

( ) ( ) ( )t x t i y t     where i denotes the imaginary unit. 

We start adding dex2 and %idey2. Then we rewrite the resulting equation in form of a single 

equation for the complex function (t). 
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At first we perform the integration: 

 

Taking into account the initial conditions  

0(0) 0, (0) 0, (0) sin( ), (0) 0x y x v y      

we get 

0(0) (0) (0) sin( )x i y v       

and equation %o29 can be written as 

 

We apply ode2 - which can be applied for 1st order DEs, too – and define (t). 

 

Considering the initial condition delivers constant %c. 
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Some manipulations give the final form of (t). 

It remains to extract real and imaginary part in order to obtain requested functions x(t) and y(t). 

 
Method 3: Using desolve. 

 

Comparing the results we fortunately can observe that they are the same. 

Finally we will resubstitute for 
B q

m
 
 .  

 

Now having done all the work we would like to see the trajectory of the particle for one data set: 
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Some years ago we solved all problems using DERIVE. It might be interesting for the reader 
to compare the solving procedures from now and then. 

We think that the code doesn't need too many explanations.  
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For solving the DEs #15 and #17 we will use the DERIVE tool DSOLVE2_IV, which needs a 

special syntax: 

We must bring the equations in the form: ( ) ( ) ( ) ( ).x t p x t q x t r x       
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Then we can apply 
0 0 0DSOLVE_IV(p,q,r,t,t ,x(t ),x(t )) . We do this for both equations: 

 

We can define the trajectory putting all components together, substitute the provided data 
and plot the curve. 
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We can define the trajectory putting all components together, substitute the provided data 
and plot the curve. 

Then there was given the hint to proceed applying DSOLVE and the remainder of the exercise 

was left to the reader to complete. 

Method 3 could not be applied using DERIVE but there was a screen shot of a Mathematica-

procedure applying DSolve: 

 

You are invited to compare with Method 3 performed with Maxima. 

But there was also a small add-on: 

It was shown that the kinetic energy of the particle is constant. 

(The components of r_(t) are the final results of the calculation above. 

 

It is clear that the kinetic energy depends only on the initial velocity v0, i.e. it remains 
constant. 

Note: The result obtained is the result we could have expected because the magnetic force is 
always perpendicular to the displacement, which means that it does not do any work. 

■▬▬▬▬▬▬▬▬ 
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V.5 Calculate the trajectory of a particle of mass m and electrical charge q moving in a constant 
electric and magnetic field which are mutually perpendicular. 

 

Solution: 

Let us assume the co-ordinate system oriented as given in Fig. V.5. 

 
Fig. V.5 

Using such a coordinate system we have 

( ,0,0) and (0,0, ).E E B B 
 

 

Let's assume the following initial conditions: 

0 0 0 0 0 0 00, 0, 0 and ( , , ).x y zx y z v v v v   


 

We enter position vector and velocity vector followed by the field vectors and proceed like in the 
problems above. 
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Below are all components of the particular solution describing the trajectory. 

 

We plot the space curve for a chosen data set: 

 

 
 

■▬▬▬▬▬▬▬▬ 
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V.6 Calculate the trajectory of a particle of mass m and electrical charge q moving in a constant 
electric and magnetic field which are oriented in opposite direction to each other. 

Take this problem as an exercise. 

You may assume that the co-ordinate system is oriented as given in Fig. V.6.  
 

 

Fig. V.6 

Electric and magnetic field are given as ( ,0,0) and ( ,0,0).E E B B  
 

 

Assume the following initial conditions: 0 0 0 0 00,   0,   0; ( , ,0)x yx y z v v v  


 

Solution: 

The equation of the trajectory is 

2
0 0

0( ) , sin , cos 1 .
2

y y
x

mv mvqt E qt B qt B
tr t t v

m q B m q B m

      
  

 

 

See a possible trajectory: 
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V.7 Solve the equations of motion for a charged particle of mass m and charge q moving in an 

oscillating electric field ( cos( ), sin( ),0), where ,
q B

E E t E t
m

    


 and a uniform and 

constant magnetic field oriented perpendicular to this electric field (0,0, ).B B


 Take as 

initial conditions 0 0(0,0,0), (0,0,0).r v 
 

 

 

Solution: 

We can work as before and apply the third method. 

 

We receive the components of the trajectory in explicit form and define them as functions: 
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As you can see it is necessary to calculate the limit, substitution does not work because the 
denominator of x(t and y(t) equals zero. 

Finally we will plot the trajectory based on a set of parameters. 
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We will demonstrate how to perform "Method 1" with TI-NspireCAS: 

 

Short comments are provided. 
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We plot the projection of the space curve onto the xy-plane. 
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■▬▬▬▬▬▬▬▬ 

 

V.8 Investigate the motion of a particle  moving from infinity towards the nucleus of an atom 

with Z protons. Assume that the mass of particle m is much smaller than the mass of the 
nucleus M. 

 

Solution: 

Total energy of the particle En, which is the sum of the kinetic energy and the potential energy is 
constant. Thus 
                                                          Ek  + Ep = En = const                                                                     (*) 

In polar coordinates the energies are given by: 

2
2 2 21 2

( ),
2k p

Z e
E m r r E r     (e = elementary charge) 

Assuming that the mass of the particle is much smaller than the mass of the nucleus we can consider 
the position of the nucleus as a fixed one. Thus, the area mapped out per second by the position vector 
is constant: 

2 .r C   

On the other hand: 

2
.

dr dr d dr C

dt d dt d r


 

   

Hence, substituting the above relations into the equation for the conservation of energy (*) s to the 
equation  

                                         
22 2 2

4 2

2

2 n

m C dr C Z e
E

r d r r

  
       

                                                             (**) 
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We introduce a new variable:   
1

( ) ,
( )r

 


  

calculate the derivative  

2
2

( ) ( ) 1 ( )
( )

( )

dr d d
r

d d d

    
    

     

and substitute both into the equation (**): 

2

2( )
( ) ( )

d
A B

d

     


 
   

 
  where 

2

2 2

24
, .nEZ e

A B
mC mC

   

Hence, the equation for the conversion of the energy is now in a simpler form. 

Differentiating this equation and cancelling the factor 
( )

2 ,
d

d

 


  we obtain the following equation: 

2

2

( )
( ) 0.

2

d A

d

   


    

We will solve this equation supported by the ode2 function: 

 

The constants %k1, %k2 can be calculated from the initial conditions as follows. The trajectory of the 

particle at infinity is of course just a straight line. Suppose that this straight line, when extrapolated, 
passes the nucleus at a distance d. This means that at time t = 0, we can write the following two initial 
conditions (see Fig. V.8): 

0
( ) ( ) 0r

  
  

 
    

and 
sin( )

( ) ( )sin( ) ( ) lim .
( )

y r y d
 

   
 

     

 
Fig. V.8 

 

r

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%k2 was easy to find. %k1 can be found from the second initial condition. Then we can plot the 

trajectory: 

 

The form of the graph gives the idea that there might be asymptotes. 

We start with the limits for  tending to 0 and infinity. 
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We can conclude that y = d which is y = 0.05 is the horizontal asymptote. Next page shows additional 

explanation. The result given in %o16 will become clear later. 

Now for the second asymptote: We try to find its slope first. According to the sketch it is tan(α) when 

r(α) tends to infinity which is equal to (α) becomes 0. 

So we have to solve the equation: 

 

Unfortunately we cannot solve this equation in one step with Maxima (with DERIVE it is possible). 
There are some ways to overcome this deficiency. We will show tow of them: 

 

We know that our asymptote has the form 
4

.
3

y x b   We need to know b. But let me show a second 

way to find the slope of the asymptote: 
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The idea is to find the intersection point(s) of the asymptote and the graph in infinity. Is it possible to 
derive the implicit form of the graph? Let's try. 

 

Some manipulation is necessary to obtain a reasonable form of eq2 (implicit form of the trajectory). 

 

Looks good, seems to be a conic (hyperbola?). 
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We prepare the expressions for the plot and then plot the trajectory again but now together with the 
two asymptotes. 

 

 

We can do without complicated search for the asymptotes when we identify the graph as a 
hyperbola first. Then it is easy work to find its asymptotes. 

As the first ideas for this collection of physics problems treated by means of computer 
algebra were realized with DERIVE we will finish with the DERIVE solution. We will also do 
the initial calculations to get the differential equation and we will find the asymptotes directly. 
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We reduce the differential equation: 

 

Now we have solved the differential equation. For the syntax of DSOLVE2 see page 17. We 

find the constants in the same way as we did with Maxima. 
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We plot the trajectory with different ranges for : 

 

 

  

Now we can see the meaning of the Maxima result in %o16 above (right plot). 

We find the implicit form of the curve and use a tool from the DERIVE Newsletter #83: 
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■▬▬▬▬▬▬▬▬ 
 

 

Additional Explanation 

The total energy and angular momentum of the particle are constant. 

Total energy of the particle is the sum of kinetic energy and potential energy 

Ek  + Ep = En = const 

 

Kinetic energy: 

2 2 2 2 21 1 1
( ) ( )

2 2 2k x y rE mv m v v m v v      

vr and v are the polar components of the velocity: , .r

dr d
v r v r r

dt dt
       

So we have in polar coordinates: 

2 2 2 2 21 1
( ) ( ).

2 2k rE m v v m r r       

 

Potential energy: 

(2e = charge of the -particle, Z e = charge of the nucleus with Z protons) 

2
1 2 2 2z

p

Q Q rQ Q e Ze Ze
E

r r r r
     

 

Magnitude of the angular momentum: 

2 2| | | ( ) | | |r r rL r mv r e m r e r e m r const r C          
        

( 1, 0)r r re e e e   
   

 


