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III. Magnetic Field 
 

A magnetic field can be described by using the following quantities: a magnetic induction vector 

,B


 the magnetization vector  J


 and magnetic strength .H


 These quantities are related to each other 

through the equations 

 0 0,    B H J B H   
    

, 

where 0  is the susceptibility of free space and  is the relative susceptibility of a material medium. 

When solving the problems in this chapter, we will use the following laws of physics: the laws of Biot-
Savart, Ampere and Faraday. 

According to the Biot-Savart law the contribution of an element of a conductor dl with current I to the 

magnetic field strength H


 at a point r


 is given by the formula: 

 
34

I dl r
dH

r



 

 III.1 

Ampere's law is of the form 

 H dl I

  III.2 

where the integration is along a closed line and I is the total current flowing through a surface bounded 
by the line. 

Faraday’s law of electromagnetic induction says that the electromotive force induced in a closed 
circuit is proportional to the temporal rate of change of a magnetic flux through a surface bounded by 
the circuit 

 
d

E
dt


   III.3 

 
 

PROBLEMS 

III.1 A magnetic field is generated in the point P by a straight conductor of length l, in which a 
current I flows. The configuration of the system is given in Fig. III.1. Assume the position of 
the point observed is defined by the angles α1, α2. 

 

Fig III.1 
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Solution:  

Introducing the angle α as a variable, one can perform the following substitutions in the Biot-Savart 
law: 

,
tan sin

a a
x r

 
   

which leads to 

2

sin
.

4

I
dH dx

r




  

We write the resultant magnetic field strength in form of the following integral: 

2

1

2

sin
.

4

I dx
H d

r d



 

 
 



   
 




 

Now we can turn to the computer algebra system: 

 

We obtain for H: 

 

If point P lies on the axis of symmetry of conductor l then we have α1 = α2. Thus, 

 

If the conductor is infinitely long, then α1 = 0 and we obtain the well-known result: 

 

The TI-NspireCAS treatment is following: 
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Exercise: The magnetic field strength generated by an infinitely long, straight conductor is most easily 
calculated by applying Ampere's law. Carry out the appropriate calculations. 

■▬▬▬▬▬▬▬▬ 
 

 

 

III.2 A uniform current of surface density j flows in two infinitely long and thin tapes of width c. 
The distance between the tapes is b. Calculate the magnetic field strength generated in any 
point between the tapes and analyze the result. 

 

Solution:  

We make use of the result obtained in the previous example, in which we derived the strength of a 
magnetic field generated by an infinitely long conductor. Its strength is given by 

,
2

I
H

a
  

where: I is the linear current, a the distance between a point and the conductor. 

First we consider one tape. We define the system of coordinates as shown in Fig. III.2. 

 

Fig III.2 

One can treat the tape as an infinite number of conductors (bands of width dy) parallel to the z-axis. 
The value of the magnetic strength generated by one conductor (band) is given by (see previous 
example): 

2 2
0 0, where and ( ) .

2

dI
dH dI j dy r x y y

r
      

Its Cartesian coordinates are given by 

0

0

sin( ), cos( ), where arccos .x y

y y
dH dH dH dH

x
  


    
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The components of the resultant magnetic field can be obtained by integrating over the whole range 
of the y-component (width of the tape). 

/ 2 / 2

/ 2 / 2

, .
c c

x x y y

c c

H dH H dH
 

    

Now let the CAS do the job: 

 

Evaluating the integral we get: 

 

Declaring the domain of x0 and applying function logcontract leads to %o8. 

 

We obtain the field strength for the point lying on the x-axis (y0 = 0): 

 

Expression %o9 indicates that the vector of the field strength his parallel to the y-axis. 

We let the width of the tape tend to infinity, then we obtain: 
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In case of two tapes the resultant field strength is the sum of the strengths generated by the individual 
tapes. 

The point lies in-between the two tapes, b > x0. 

Here it is necessary to take two possibilities into account. If the currents are flowing in the same 
direction, then we have: 

 

Similarly, if the currents flow in opposite directions: 

 

The expressions obtained are general but rather complex. 

We will analyze a particular case, i.e. where the tapes are of infinite width. 

a)  for currents flowing in the same direction 

 

b)  for currents flowing in opposite direction 
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This shows that if the currents are flowing in opposite directions then the magnetic field between 
infinitely large tapes becomes zero. 

Working with DERIVE is quite the same. There is one exception in the last two results. We 
cannot define b – x0 > 0, so we have to substitute SIGN(b – x0) by 1 manually: 

 

 

We show the last steps performed by TI-NspireCAS and we can observe the same – very 
little – problem with the sign-function: 

 

■▬▬▬▬▬▬▬▬ 
 

III.3 Calculate the strength of a magnetic field due to a circular conductor of radius R with current 
I, along the axis perpendicular to the circle plane and passing through its centre (Fig II.3). 

Solution:  

We apply the law of Biot-Savart (formula III.1). 

It should be noted that due to symmetry the vector of the strength of the magnetic field will be directed 

along the z-axis. Thus, the strength resulting from an element of the conductor dl


 is given by 

sin .zdH dH 
 
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Fig III.3 

 

The following relations hold: 2 2 , sin .
R

r R z
r

    

Since dl r
 

 formula III.1 reduces to 
2

2

0

1 sin
.

4

R

zH dl
r





 


 

We enter these formulae and then evaluate the integral above: 

 

At the centre of the circular conductor (z = 0) we get: 

 

■▬▬▬▬▬▬▬▬ 
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III.4 A current I flows through a piece of arc shaped wire described by the following parameters: 

radius of curvature R and angle 0 (see Fig. III.4). Find the magnetic field strength along a 

line perpendicular to the plane of the arc and passing through the centre of curvature. 

 

Solution:  
 

The elementary contribution to the magnetic field vector at ,r


 originating from the element of current  

I dl


 

is given by the law of Biot-Savart 

3

1
.

4

I dl r
dH

r



 

 

According to Fig. III.4 the vectors anddl r
 

 are mutually perpendicular, which allows us to simplify 

the formula above: 

2

1
,

4

I dl
dH

r
  where 2 2, .dl R d r R h    

 

Fig III.4 

The z-component of dH


is  

cos .zdH dH   

The projection of dH


onto the xy-plane is equal to dH sin and its x-component is given by 

sin cos .xdH dH    

In the system of coordinates defined (Fig. III.4) dHy = 0, due to symmetry. The resultant field vector 

H


is obtained as result of the following integration. 

0 0

2 2

0 0

2 ,0,2 .x zH H dH dH

  
   
 
 
 

 
 

Now we can enter the expressions given above in Maxima: 
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Expression %o5 shows the resulting field vector. 

 

For the full circle (%o6) and then for the centre of the circle (%o7) we receive: 

 

DERIVE and TI-NspireCAS are doing pretty similar. We don't need the assumptions.  
TI-Nspire doesn't distinguish between lower and upper case, so we use rr for R, etc. 

 

For comparison, see the result of problem III.3. 

■▬▬▬▬▬▬▬▬ 
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III.5 We are given a solenoid of length l, with N coils of radius R. A current I flows through the 
coils of the solenoid. Find the formula describing the magnetic field induced along the axis of 
the solenoid. Find an expression for the magnitude of this field in the centre and at the ends of 
this axis. Calculate the magnetic field induced in these points for the following data: 

I = 4A, N = 1000, l = 0.5m, R = 310-2m. 

 The susceptibility of free space is 7 7
0 2 2 2

4 10 4 10 .
kg m N

A s A
   

     

Solution:  

In problem III.3 we calculated the strength of the magnetic field along the axis of a circular conductor 
with an electric current flowing inside. Applying this result (%o5), in accordance with the notation 
used in Fig. III.5 … 

 
 

Fig. III.5 

… the strength of the magnetic field induced by an element of length dx of the solenoid in a point 
along the axis, which is in a distance x from this element, is given by the formula 

 

2
0

2
2 2 3

,

2

I R
dB n dx

R x





 

where 
N

n
l

  denotes the number of coils on the solenoid per unit length. Thus, the strength of the 

field along the axis of the solenoid in a distance a from its centre is given by the integral expression 

 

2

2
0

2
2 2 3

2

( ) .

2

l
a

l
a

I R
B a n dx

R x





 









 

Now we are ready for performing the calculations: 
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We calculate the strength in the centre of the solenoid (a = 0, gives %o4 left), at the end of it (a = l/2, 
gives %o4 right) and for a solenoid of infinite length (result in %o5): 

 

Now we will carry out the numerical calculations: we calculate the magnetic induction of the induced 
magnetic field for the given data: 

 

The magnetic induction is expressed automatically in Tesla (symbol T). 

We try TI-NspireCAS making use of the built-in physical constants (e.g. _0): 
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It is remarkable that the result is given in Tesla! 

What about DERIVE?  

 
There are also a lot of physical constants and units provided in utility files, but neither the 
susceptibility nor Tesla. So we have to work like with Maxima – one exception: it is not 
necessary to explicitly force cancelling R2

 (%i4 in Maxima). 

■▬▬▬▬▬▬▬▬ 
 

III. 6 A conductor of length l is formed to a regular polygon with n sides. A current I  flows in it. 
Calculate the magnetic field strength at the centre of the polygon. 

 
Solution:  
 
The resultant magnetic strength is the sum of the fields generated by the individual sides of the 
polygon.  

 
Fig. III.6 

 
Since the magnetic field generated by each side of the polygon is the same at the centre of the 
polygon, the superposition is simply 

0( ) ( )H n n H n  

l

n
 

n

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where H0(n) is the field strength generated by one side in the centre of the polygon. In problem 
III.1 we evaluated the expression describing the strength of a magnetic field generated by a straight 
wire conducting current I. Using this result we have 

0

cos
( ) ,

2
nn I

H n
h




  

here, however, the respective angle and distance are (see Fig. III.6): 

2

and tan .
2 2n n

ln h
n


 


   

 

The field strength is given in %o4. The next expression shows the limit for n  , which leads to 

the field strength appearing in the centre of a circular conductor with circumference l. You may 
compare with the result of problem III.3. 

 

DERIVE and TI-NspireCAS are 
behaving similar. It is a question of 
taste whether you prefer Maxima's 
%o4 or the DERIVE expression #3 
for H(n). 

 

 

 

 

 

■▬▬▬▬▬▬▬▬ 
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III. 7 A hollow portion of a sphere of radius R is electrically charged. The portion of the sphere 
is symmetrical with respect to the x-axis and the line from the centre of the sphere to the 

edge of the portion makes a maximal angle of max with the x-axis (see Fig. III.7). The 

surface density of the charge is constant and equal to . The sphere rotates with a constant 

angular velocity of  about its axis of symmetry. Calculate the magnetic field strength 

generated in some point lying within the sphere along this axis of symmetry.  

 
Solution:  
 
We consider a circular element of area 2dS rR d  . The charge on this element amounts to 

dQ= dS. 

 

Fig. III.7 
 
This circular element can be treated as a circular conductor with a current dI flowing through. 

.
2

dQ dQ
dI

T



   

We use the solution of problem III.3.The strength of a magnetic field generated by a circular 
conductor of radius R with a current I flowing along the axis of symmetry in a distance z from the 
centre of the ring is given by 

 

2

3
2 2 2

.

2

I R
H

R z




 

The field strength generated by the rotating ring is given by 

2

3

1
,

2

r dl
dH

l
  

where 

2 2sin , cos , ( ) .r R h R l r h x       

First we enter the relations given above. Then we perform the integration over the range of values 

taken by the angle α (0  α  am = alphamax) 
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Next expressions are preparations for plotting for special alphamax-values (R = 4,  =  = 1): 

 

This is the graphic representation: 
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For the whole sphere - max = π - we get: 

 

In order to show that field strength within the sphere does not depend on the position of a point we 
calculate 

 

It can be seen from %o20 that the magnetic field strength remains constant within the sphere. This can 
be concluded by inspecting the graphic representation, too (blue function graph). 

 

Let me present the functions with DERIVE and the TI-NspireCAS graphs below: 

 

 

 

 

■▬▬▬▬▬▬▬▬ 
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III. 8 A conductor is fixed at the points A and B (Fig.III.8) in a rectangular frame with sides of 
length a and b. The frame lies in a uniform magnetic field B, which is perpendicular to the 
plane of the frame and which increases linearly with time (B = k t.) . The resistance of a 
unit length of the conductor is r. Calculate the current induced in the conductor and the 
electrical potential difference between the points A and B.  

 
Solution:  
 
In the circuits ABD, ABC (Fig.III.8)  

 
Fig. III. 8 

 
the electromotive forces induced are given by 

1 2
1 2 ,

d d
E and E

dt dt

 
     

where 1, 2 denote the fluxes of the vector of magnetic induction through planes ABD and ABC, 

respectively. These can be written in the form 

1 = BS1, 2 = BS2, 

where the surface areas S1, S2 of the circuits are given by 

S1 = a (b – c), S2 = a c. 

We remember the Kirchhoff laws and we turn to our CAS tool: 

(This problem was treated by using the latest wxMaxima-version 15.08.1 which provides among 
other improvements Greek characters and mathematical symbols.) 

 

We calculate the currents by solving the above simultaneous equations 
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It should be noticed that the direction of current I3 is in accordance with the direction indicated in 

the figure if .
2

b
c   

Next we calculate the potential drop along the conductor AB: 

 

It can easily be seen that the potential drop UAB and consequently current I3 is equal zero for  

.
2

b
c  We have: 

 

From the physical point of view, however, the only satisfactory solution is .
2

b
c   

■▬▬▬▬▬▬▬▬ 
 

III. 9 A thin conducting ring is placed in a uniform magnetic field, whose induction B fluctuates 

according to the formula 0 cos(  )B B t . The radius of the ring is r, its resistance R, and 

coefficient of self-inductance L. The induction vector B


 lies at an angle  to the plane of 

the ring. Calculate the average moment of the forces acting upon the ring. 

 
Solution:  
 

The torque M


 acting upon a flat circuit placed in a uniform magnetic field of induction B


, in which a 
current I flows, is given by the formula  

( ),M I S n B 
 

 

where n


 denotes a unit vector perpendicular to the plane S containing the conducting circuit. 

 
Fig.III.9 
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In accordance with Fig.III.9, the instantaneous value of the moment of force is given by  

 M IBS IBS 




 sin cos


 

2
   

From Ohm’s law the current flowing in the circuit is directly proportional to the electromotive 
force E 

E = I R 

The resultant electromotive force E is equal to the sum of the electromotive forces induced as a 
result of the changes in the flux of the induction of the external magnetic field and the 
electromotive force of self-induction  

.
d dI

E L
dt dt


    

Using the notation used in Fig.III.7, the flux of the magnetic induction vector through the plane of 
the ring is given by 

2cos sin , where .
2

B S B S S r
         
 

 

 

We start entering the given relations: 

 

The differential equation resulting from Ohm's law has the form: 

 

In order to find current I(t) we use the procedure desolve for solving the differential equation: 
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Right hand side of the solution (%o9) describes how the current varies in time. It can easily be seen 
that three terms of the sum tend to zero when time tends to infinity: 

 

We are interested in the remaining terms describing the steady state of the system: 

 

In the next step we enter the moment of the force M(t) and then proceed finding the requested average 
moment of the force Mav. 

 

 

The screen shot below shows how to solve the problem with TI-NspireCAS. 

 

 

■▬▬▬▬▬▬▬▬ 
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III. 10 A uniform rod of length of length l and mass m is placed on two parallel, horizontal rails. 
These rails are connected to a source of constant potential difference U and placed in a 
constant magnetic field of strength B. This magnetic field is perpendicular to the plane 

containing the rails. The coefficient between the rod and the rails equals . 

a) What is the velocity of the rod at time t? 

b) Assuming that the rails are infinitely long, calculate the maximum velocity of the 
rod. 

 
Solution:  
 

 
Fig. III 10 

The motion of the rod is determined by a force F


 which is the resultant of two forces: the electro-

magnetic force elF


 and the force of friction .fF


 

where and .el f el fF F F F B I l F G m g       

Motion of the rod causes a change in the flux of the magnetic field  and an electromotive force is 

induced 

, where ( ).
d

E B S Bl x t
dt


      

The current flowing in the circuit is given according to Ohm's law by 

.
U E

I
R


  

Now we can enter all above given relations 

 

and we apply Newton's 2nd law (Force = Mass times Acceleration): 

 

Two ways of calculating the requested velocity of the rod i.e. the unknown function x'(t) are presented 
below. 
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Method 1: We separate the variables in equation (eq) and integrate wrt t. 

 

Then we solve the resulting equation for x'(t) … 

 

… and extract the right hand side which represents the velocity. 

 

When time tends to infinite we get maximal velocity. This fact can formally be confirmed by 
calculation of the limit of the velocity. 

 

I'd like to give an additional graphic confirmation by entering numerical data and then plotting the 
velocity function: 
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Method 2: We choose applying function ode2. 

We enter equation (eq) from above directly and solve the differential equation. 

 

 

It is charming to compare solving the ODE applying DERIVE and TI-NspireCAS as well. 

In DERIVE we make use of built-in DSOLVE1(p,q,t,y,t0,v0) after rewriting the equation 

in the form p(t,v) + q(t,v)v' = 0, v(t0) = v0. 
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TI-NspireCAS makes entering the equation easier but here it is not possible to find the limit 
for t tending to infinity. But we can see this by inspecting the exponential expression, of 
course! 

 

Problem III.11 is similar. 

■▬▬▬▬▬▬▬▬ 
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III. 11 Two long vertical rails are closed at the upper end by a resistance R. A conductor of mass 
m and length l falls without friction along the rails. The whole system is placed in a 

uniform magnetic field of induction B


 perpendicular to the plane of the system.  

 Calculate the velocity of the falling conductor as a function of time. 

 
Solution:  
 
The system of the rails and the conductor creates an electric circuit. 

The fall of the conductor causes an electromotive force 

d
E

dt


    with ((t) = Blx(t)). 

The current flowing in the circuit of resistance R is given by 

.
E

I
R

  

Within the magnetic field, an electro-dynamic force Fel and a gravitational force m g act upon the 

conductor with the current flowing in it. Vector B


 is perpendicular to the conductor. Thus the electro-
dynamic force is given  by (see Fig. III.11) 

.elF B I l    

                                          
Fig. III 11 

 

 

The electro-dynamic force counteracts the changes in the magnetic flux, thus it is directed 
vertically upwards. Hence, we obtain the equation for the dynamics of the system: 
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Substituting x'(t) by v(t), we obtain the differential equation (%o6) which can be successfully 
solved: 

 

In the last step the velocity for sufficiently large t is evaluated: 

 

Exercise: Expression %o6 "invites" to separate the variables and then to solve the ODE. You 
might try to do this manually without technology support. 

 

 


