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We show how the combination of computer algebra and
geometric software allows students to locate the complex
roots of real polynomials. Students use the geometric soft-
ware to interactively conjecture the pattern of polynomial
roots. They construct the complex roots of fourth degree
polynomials from geometric features and algebraically
verify that these conjectures are true.

1 INTRODUCTION

There is a well-known, simple construction that lo-
cates the complex roots of a parabola using a vertical line
through the vertex intersecting a circlewith radius given by
the reflected parabola’s intersection points with the x-axis.
(See, e.g., [8].) We investigated extending this technique
to higher degree polynomials. The extension became pos-
sible as a result of combining TheGeometer’s Sketchpad™

dynamic geometry software with Maple’s™ computer al-
gebra. We subsequently created interactive tools withWeb
SketchPad© for students to use to explore the connection
between the geometry shown in a polynomial’s graph and
the location of the polynomial’s complex roots. See [3]
and [4].
In this paper, we provide the results of an investigation
which employed a number of computer-based technolo-
gies synergistically. These technologies can now be used
to enhancemathematical investigations and even open new
questions to students and users.
We invite the reader to experience the dynamic documents
we have constructed for students to investigate complex
roots’ relation to a polynomial’s graphic properties. Au-
thoring interactive tools like these are only possible with
the technology now universally available. Web links to
our interactive documents will be highlighted throughout
this paper.
To simplify the exposition and computations, all polyno-
mials are real and monic. Division by a constant doesn’t
affect the roots, this restriction is without loss of generality.

I CIRCLES AND LINES

2 QUADRATIC POLYNOMIALS

The standard technique for locating complex roots of
a parabola p(x) does not generalize easily. We altered the

method by centering a circle with radius R =
√

p(0) at the
origin. Now draw a vertical line through the parabola’s
vertex. The intersections of the line and circle identify the
complex conjugate roots of p as shown in Figure 1.

Figure 1: Constructing the Complex Roots of a Quadratic

A dynamic graphing applet for student explorations
is available at: http://mathsci2.appstate.edu/TIME-
2016/DFigure2Quadratic/. Users can perform the
action of dragging complex roots in the dia-
gram observing the consequences of their changes
and reflecting on the mathematical meanings. A
Maple worksheet for explorations is available at:
http://mathsci2.appstate.edu/TIME2016/Maple/Explore
Circles and Lines v2.0.mw. These interactive activities
implement the action-consequence-reflection paradigm
(see [1], [5], and [6], etc.).

3 CUBIC POLYNOMIALS

The standard technique for cubic polynomials c(x)
begins with determining the real part of the complex con-
jugate roots by finding the line through the real root that
is also tangent to the cubic. The abscissa of the point of
tangency is the real part of the complex root. We then
continued our theme of circles centered at the origin with
radius R =

√
−c(0)/r or, when r = 0, use R =

√
c′(0). as

shown in Figure 2.
A dynamic graphing applet for student explorations
is available at: http://mathsci2.appstate.edu/TIME2016/
DFigure3Cubic/. For the cubic, users can perform the ac-
tion of dragging the complex roots and/or the real root in
the diagram observing the consequences of their changes
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and reflecting on the mathematical meanings. The Maple
worksheet linked previously also explores cubic polyno-
mials.

Figure 2: Constructing the Complex Roots of a Cubic

4 QUARTIC POLYNOMIALS

Quartic polynomials make a very interesting case:
they can have n = 0, 2, or 4 real roots (counting multiplic-
ity) with the complement m = 2 − 1

2 n complex conjugate
root pairs.
Earlier graphical approaches cleverly used of surfaces (see,
e.g., [7]), but were inaccessible to most secondary stu-
dents. We continue our theme of locating the roots via
vertical lines intersecting circles centered at the origin.
However, the computations are a good deal more involved.
The formulas display symmetries in the roots that become
apparent from our ‘circles and lines’ interactive diagram.
Users can quickly discover these symmetries in Figure 3

Figure 3: Symmetries of Quartic Roots
and also explore these symmetries with the Maple work-
sheet previously linked.
Our first interactive diagram for quartics has a pair of
real roots and complex conjugate roots; it is available at
http://mathsci2.appstate.edu/TIME2016/DFigure4Quartic/.

Our second interactive diagram for quartics focuses on
the case of two complex conjugate root pairs. Examine
http://mathsci2.appstate.edu/TIME2016/DFigure7Quartic2
Complex/.
A quartic polynomial may possess a bitangent — a line
tangent to the quartic at two points. A bitangent can be
used to locate the real part of the complex roots. In-
vestigate http://mathsci2.appstate.edu/TIME2016/DFig-
ure6QuarticBitangent

5 SPECIAL HIGHER DEGREE POLYNOMIALS

Attempting to generalize the construction method for
cubic polynomials led us to discover a technique for spe-
cial polynomials with n real roots and a single complex
pair. Suppose that

f (x) = (x − r)n
(
(x − a)2 + b2

)
.

Locate the real part a of the complex conjugate roots by
graphing the auxiliary function

f̂ (x) = f ′(x) − n f (x)
x − r

;

the roots of f̂ (x) occur at r and a. Draw a vertical line
through (a, 0). The circle centered at the origin with
radius R =

√
| f (0)/rn | or, when r = 0, with radius

R =
√�� f (n)(0)/n!

�� intersects the vertical line at the com-
plex conjugate roots as shown in Figure 4. The auxiliary
function is shown in blue.

Figure 4: Special Higher Degree Polynomials
Users are invited to explore special higher de-
gree polynomials with the interactive diagram at
http://mathsci2.appstate.edu/TIME2016/DFigure8Higher
Degree/.
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The analysis above can be extended to more general n + 2
degree monic polynomials

f (x) =
(
(x − a)2 + b2

)
·

n∏
i=1
(x − ri)

with one complex conjugate pair of roots and n real roots,
not necessarily distinct, by defining the auxiliary function

f̂ (x) = f ′(x) − f (x) ·
n∑
i=1

1
x − ri

.

II THREE POINT CONSTRUCTION OF
A QUARTIC’S ROOTS

6 COMPUTING THE ROOTS OF QUARTICS

In our search for methods to identify the complex conju-
gate roots of a quartic, we discovered a result that allows
us to compute the roots, both real and complex, and which
highlights the symmetries of the roots.

Theorem (Three-Point Construction). Let q(x) be a
monic, reduced, real polynomial of degree 4. Choose
any nonzero base point x0 ∈ R. The zeros of f can be
computed from the three values q(x0), q(0), and q(−x0).

The theorem depends on two observations: For any point
x0 , 0,

q′(0) = 1
x0
( f (x0) − f (−x0)) (1)

q′′(0) = 1
x2

0

(
f (x0) − 2 f (0) + f (−x0) − 2x4

0

)
(2)

The computations in the proof bring us to see that the roots
of the quartic are given by

z1,2 =
√

A ±
√

B and z3,4 = −
√

A ±
√

C

where A, B, and C were derived from the values given
in equations (1) and (2). Here A will always be real, but
C and B may be either real or complex; these formulas
clearly show the symmetry of the roots. The complete
proof appears in [2].
A printout of Maple visualization code for the theorem is
available at http://mathsci2.appstate.edu/TIME2016/Maple/
MapleVisualizationCode.pdf

CONCLUSION

By combining the technology available for dynamic ge-
ometry with computer algebra, we were able to investigate

the rich connections between the geometric features of a
polynomial’s graph and the location of its complex roots.
New technology, Web Sketchpad, allowed us to create in-
teractive environments in which students can explore and
uncover these relationships for themselves. The combi-
nation of capabilities of the different programs gives us
extremely powerful pedagogical tools.
We also came to a deeper appreciation of the genius of
Descartes, Fermat, Newton, Leibniz, and those who came
before who had amazing understanding developed without
the aid of interactive technological tools.
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