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Abstract 
 

Several years ago Leon Magiera produced a very extended paper "DERIVE for Phys-
ics" treating problems from electric and magnetic fields using the at this times avail-
able and widely used CAS DERIVE. Josef Boehm translated the paper and added 
CAS-parts using TI-Voyage and the first versions of TI-Nspire. The German and 
English book were ready to be printed and published. (This was 2006 / 2007). Then 
DERIVE was taken off the market and the publisher ended his business … End of the 
story? No! 

Just recently Leon sent a new paper to Josef. He does not want to leave his paper 
hidden in his room. He rewrote the paper based on the free CAS wxMaxima and of-
fered Josef to set his "Maxima for Physics" anywhere in the Internet for free 
download. His paper from 2006 was extended and the earlier chapters about prob-
lems from Electric Fields and Magnetic Fields are now accompanied by chapters 
"Circuits" and " Mechanics of a Charge in Electric and Magnetic Fields". 

Josef added solving the problems not only using Maxima, but also TI-NspireCAS and 
sometimes good old DERIVE focussing on the advantages and disadvantages of the 
various software tools. So he changed the title to a more general "CAS" for Physics 
Problems. 

 

We will present a selection of examples from all four fields covered in the papers. 

email address of the authors: 

nojo.boehm@pgv.at 

leon.magiera@wp.pl 
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This was the cover of the German version in 2006. 

 

 

The new version comprises four parts and an introduction, Electrostatics, Magnet-
ism, Circuits and Mechanics of Charged Particles. 

I – Josef – am no physicist. So my part was to cope with CAS-questions, compari-
sons between various computer algebra systems, pose "silly questions" and to bring 
the whole paper into a common format. 

 

Introduction 

• This presentation is devoted to solving practical problems in the field of electricity and mag-
netism using computer algebra systems (Maxima (maxima.sourceforge.net), TI-Nspire, DE-
RIVE). 

• The selected problems usually appear in standard general physics courses at university level 
(science and engineering); some are also suitable for high schools. 

• Each section begins with the formulation of a physical problem and then the reader is lead 
through a detailed, step by step, description of its solution with the use of the computer alge-
bra system. 
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Example 1: Electric Field 

 

One of the solutions, namely: 1 2 3 4 Q Q Q Q   (full symmetry) is obvious. We try to find the re-

maining solutions: 

 

 

 

We apply the relationship between potential and field strength: 

 

The electric field vector disappears in the desired point if every its component is zero. This implies 
that we have to solve two equations. We try to solve this equation system e.g. for the unknowns Q1 
and Q2. 

 

From the received solution we can conclude that the resultant power acting on charge Q0 disappears 
when conditions Q1 = Q3 and Q2 = Q4 are fulfilled. 
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Of course, if every component of any vector is equal zero then its value (length of the vector) is equal 
to zero. We are getting the task to the solution of only one equation  

 
[0,0,0]

0
r

EE




 
. 

We try to solve this equation for one unknown e.g. for Q1: 

 

As charges are real we deduce from %o14 that Q1 = Q3 and further Q2 = Q4. 

Of course, the same relations between charges are being received by solving the equation with respect 

to any other charge e.g. Q2 (see above %o15). 

We can obtain the solution of the problem in a single step applying the solve command: 

 

Now we substitute appropriate data and plot the potential: 
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The equipotential curves in the xy-plane are plotted: 

 

 

 

TI-Nspire does not enable plotting the contour lines. 

We introduce sliders for the xy-plane for visualizing the con-
tour lines: 
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It is interesting that the old handheld Voyage 200 enables even plotting the contour lines – not in 
best quality, but it works: 

      

 

 

 

I transfer the equation of the potential to GeoGebra and plot the surface together with contour lines: 
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Example 2: Electric Field 

 A cylindrical dielectric layer characterized by two radii R1, R2 and height H is uniformly 
charged with a charge Q. Find the vector of the electric field 

a) on the axis of symmetry, 

b) in the centre of the base circle (see Figure). 

  

The resultant vector of the electric field is of the form 

2

1
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3
0

0
0

.
4

H

R

R

r
E R dR d dz

r



 




  


  (0 = permittivity in vacuum) 

My point of interest was how the systems will treat the triple integral. 

We perform the integration and plot the 3rd coordinate of the strength versus z0: 
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We treat the problem with TI-NspireCAS: 

 

Sliders improve the presentation: 

 

The Analyse-Tool supports finding the position for the maximum strength. 
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Example 3: Magnetic Field 

A uniform rod of length l and mass m is placed on two parallel, horizontal rails. These rails 
are connected to a source of constant potential difference U and placed in a constant mag-
netic field of strength B. This magnetic field is perpendicular to the plane containing the rails. 

The coefficient of friction between the rod and the rails equals . 

a) What is the velocity of the rod at time t? 

b) Assuming that the rails are infinitely long, calculate the maximum velocity of the rod. 

 
 

The motion of the rod is determined by a force F


 which is the resultant of two forces: the electro-

magnetic force elF


 and the force of friction .fF


 

where and .el f el fF F F F B I l F G m g       

Motion of the rod causes a change in the flux of the magnetic field  and an electromotive force is 

induced 

, where ( ).
d

E B S Bl x t
dt


      

The current flowing in the circuit is given according to Ohm's law by 

.
U E

I
R


  

Now we can enter all above given relations 

 

and we apply Newton's 2nd law (Force = Mass times Acceleration): 

 

Two ways of calculating the requested velocity of the rod i.e. the unknown function x'(t) are presented 
below. 
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Method 1: We separate the variables in equation (eq) and integrate wrt t. 

 

Then we solve the resulting equation for x'(t) … 

 

… and extract the right hand side which represents the velocity. 

 

When time tends to infinite we get maximal velocity. This fact can formally be confirmed by calcula-
tion of the limit of the velocity. 

 

I'd like to give an additional graphic confirmation by entering numerical data and then plotting the 
velocity function: 

 

Let's plot the velocity function: 



TIME 2016 

11 

 

 

 

Method 2: We choose applying function ode2. 

We enter equation (eq) from above directly and solve the differential equation. 

 

 

It is charming to compare solving the ODE applying DERIVE and TI-NspireCAS as well. 

In DERIVE we make use of built-in DSOLVE1(p,q,t,y,t0,v0) after rewriting the equation in the form 

p(t,v) + q(t,v)v' = 0, v(t0) = v0. 
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TI-NspireCAS makes entering the equation easier but here it is not possible to find the limit for t tend-
ing to infinity. But we can see this by inspecting the exponential expression, of course! 

 

 

                                                      This is the limit. 
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Example 4: Circuits - Resistances 

Find the total resistance for the circuit presented in the figure. 

 

 
Give the numerical result for the total resistance for R1 = 2, R2 = 3, R3 = 2, R4 = 3,  

R5 = 2, R6 = 3, R7 = 2, R8 = 2 and R9 = 2. 

 

We "simplify" the circuit by manipulating the resistors. 

Note that Resistors R5, R6 and R7 are connected in series. Therefore the above circuit can be replaced 
by a simpler form (see below). 

 
where RA = R5 + R6 + R7. 

Resistors RA and R4 are parallel connected. Hence the next simplification is shown: 

 

 

where 
B 4 A

1 1 1
.

R R R
   

 
 

As the resistors R3, RB and R8
  are series connected we then have: 

 

 

with RC = R3 + RB + R8. 

 

 
Resistors R2 and RC are parallel connected. 

 

 

where 
D 2 C

1 1 1
.

R R R
   

 

Finally total resistance RT can calculated according the formula 

T 1 D 9.R R R R    
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Let us solve the above equation system. 

 

 

Notice the eliminate in %i17. Only RT is of interest for us.  

The solution of the system is quite bulky!! Finally it is easy to carry out the calculation for the given 
numerical data and find the resulting total resistance: 

 
 

 

With DERIVE we can do in the same way, however we miss the "eliminate" command. So we re-
ceive the bulky solution containing all variables (see next page). 
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We could also work stepwise without displaying the intermediate results: 

 

 

 
 
Finally we substitute the given resistances. 
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If we enter the designations together with an equals-sign then we can see the intermediate results, too. 

 
 
 
Below you can see the same procedure carried out with TI-NspireCAS. 
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Example 5: Circuits – Resistances and Maximum Current 

We have three identical cells with an electromotive force of E and an internal resistance of r. 
How should these cells be connected to each other to serve as battery, in order to give the 
maximum current across an external resistance of R? 

 

I choose this example because it demonstrates the way to treat inequalities. 

 

It is sufficient to consider and to compare the four configurations of connecting the cells to a circuit 
as illustrated in figures a –  d. 

 

The other possible ways of connecting the cells involve different polarization of the cells, and are 
thus less favourable. 

Using Kirchhoff's laws we get the following equations for the four circuits: 

(a) 

 
1

1 1 1 3a a

r
E I R I R

r r r

 
         

   
 

 

(b) 

1

1

2 ( )

( )
b

b b

E I r r I R

E I I r I R

  
   

 

(c) 

 1

1

2

2 ( )
c c

c c c

E I r I r I R

E I I r I r I R

  
    

 

(d) 

 3E = Id (3r + R) 

We enter the equations or the systems of equations and then solve them for the currents Ia to Id . 

To continue the comparison procedure of the currents we assign variable names to each of the solu-
tions from above: 

 

We introduce a positive parameter  defining the ratio of the resistances 
R

r
 to make the compari-

son of the currents easier. 
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Circuit (a) is the most favourable if the following inequalities hold: 

, , i.e. 1, 1, 1.a a a
a b a c a d

b c d

I I I
I I I I I I

I I I
       

We solve the system of inequalities given above (loading a special package "to_poly_solve" 

first). 

 

From %o17 we can conclude that circuit (a) is the most favourable for a ratio of resistances in the 

range 
2 2 2

0 or 0 or .
3 3 3

R r
R

r
      

 

The approach for the remaining cases is similar: 

 

Circuit (b) is the best in the range 
2 2

1 or
3 3

R r
R r

r
    , 

Circuit (c) is the best for 
3 3

1 or
2 2

R r
r R

r
     and circuit (d) is the best for 

3 3
or .

2 2

R r
R

r
   

As can easily be seen all intervals are open. We will check now how the circuits behave when the 
ratio of the resistances is at one of the boundaries of these intervals? What do you expect? 

I will skip this here. 

 

 

We might ask ourselves how DERIVE and/or TI-NspireCAS will perform solving the system of 
inequalities? We enter the definitions of the currents (R = rr) and make the try: 
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As we can see there is no problem and we don't need any special package or library. The CAS-
machine of TI-NspireCAS is – more or less – based on the DERIVE core, so we can be quite sure 
that DERIVE doesn't have any problems, too. 

Entering the inequalities and output of the result are very clear. 

 

 

We will enter the world of differential equations – this is where physics really starts … 
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Example 6: Circuits – R-L-Circuit 

 Given is a R-L circuit consisting of time dependent electromotive force of the form 

0( ) cos( ),V t V t a resistor R and an inductor L, connected in series. 

a) Calculate the charge Q(t) and the current I(t) when Q(0) = Q0 and I(0) = 0 

b) Plot the graphs of Q(t) and I(t)  for Q0 = V0 = R =  = 1, L = 2. 

 

We have to solve the following differential equation:     0( ) ( ) cos( ).LQ t RQ t V t    

 

It remains to calculate the two constants of integration. 

 

Now we can define charge Q(t) and I(t) as the derivative of the charge: 

 

We calculate charge and current for the given data  

 



TIME 2016 

21 

Finally we prepare for plotting and then we plot the requested functions: 

 

 

Let's try Michel Beaudin's toolbox (see References). There is also a function provided for treating 
an R-L-circuit: 

 

The plot looks the same as with wxMaxima. 
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Example 7: Electric Charge in Magnetic Field 

Calculate the trajectory of a particle of mass m and electrical charge q moving in a constant 

magnetic field .B


  

At time t = 0 position and velocity of the particle are: 0 (0,0,0)r 


 and 0 0 0( ,0, ).x zv v v


 

 
Let us assume the co-ordinate system oriented as given in the figure below. 

 
Using such a co-ordinate system we can write the field components as follows: 

Bx = 0, By = 0, Bz = .

For the components of the initial velocity we have: 

v0x = v0 sin(),v0y = 0, v0z = v0 cos(). 

We enter the definitions of position and velocity vector and of both field vectors. 

 

We need the library vector for applying Newton's equation ( ) :
q

r v B
m

 
   

 

We substitute 
B q

m
 
  to get more comfortable expressions and then extract differential Equations 

for all components. 



TIME 2016 

23 

We extract differential equations for all Cartesian components: 

 

Method 1:  

By integration: Solution of DE dez2 is trivial: 

( 0) 0 and ( 0) 0z t z t v z    give %c2 = 0, %c1 = v0 cos()  z(t) = t v0 cos(). 

We proceed with calculating x(t) and y(t). 

In the first step we integrate one of the two equations dex2 or dey2, let's take the second one. Taking 

into account the initial condition (0) 0,y   it can easily be seen that constant %c3 in %o16 is equal 

zero. Therefore %o16 can be written in simpler form %o17. 

 

In the next step we insert the above derivative into equation dex2. 

 

It is interesting that ode2 does not return the correct solution, so I try desolve – and it works 
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We can substitute x'(0) and x(0) by copy and past in %o18 or we apply subst:  

 

Our next step is inserting the obtained function x(t) in expression %i17 followed by integrating to get 

function y(t): 

 

In the final step we apply initial condition y(0) = 0 to find constant %c4. Then it's easy to get the sim-

plified result for y(t). 

 

 

Method 2:  

Using complex variables: 

The system of equations [dex2,dey2] can be solved in an elegant way by introducing a new com-

plex variable 

( ) ( ) ( )t x t i y t     where i denotes the imaginary unit. 

We start adding dex2 and %idey2. Then we rewrite the resulting equation in form of a single equa-

tion for the complex function (t). 
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At first we perform the integration: 

 

Taking into account the initial conditions  

0(0) 0, (0) 0, (0) sin( ), (0) 0x y x v y      

we get 

0(0) (0) (0) sin( )x i y v       

and equation %o29 can be written as 

 

We apply ode2 - which can be applied for 1st order DEs, too – and define (t). 

 

Considering the initial condition delivers constant %c. 

 

 

It remains to extract real and imaginary part in order to obtain requested functions x(t) and y(t). 

Same result as above! 
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Method 3: Using desolve. 

 

Comparing the results we fortunately can observe that they are the same. 

 

Finally we will substitute back for 
B q

m
 
 .  

 

 

Now having done all the work we would like to see the trajectory of the particle for one data set: 
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Graphs of some other trajectories: 
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Example 8: Challenge provided by Michel Beaudin 
          (This ione of Michel's assessment problems given at ETS Montreal) 

 
Recall: the ODE for a mass-spring problem is 

0 0( ), (0) , (0)my by ky f t y y y v        

where y(t) denotes the position of the object at time t, m is the mass of the object, b is the 
damping constant, k is the spring constant and f(t) is the external force (could be 0) and where 

the initial position and initial velociy are respectiveley 0 0and .y v  

Problem 1 : consider the (undamped) mass-spring problem with 2 impulses acting as external 
force : 

4 50 ( ) 100 ( 2 ),    (0) 10,   (0) 5y y t t y y           . 

a)  Solve the ODE and plot the graph of the position in the window 

0 < t < 10,  30 < y < 30. 

b)  For t > 2π, show that the solution can be written as A cos( t + ). 
 
 
I must admit, it is a shame but I never had to cope with Laplace transforms, Dirac Delta functions, … 
So I was busy informing myself. It was a steep learning curve but finally I was successful. See first 
how I did with wxMaxima. Then I will present Michel's solution. 

 
I perform the Laplace transformation applied on the given differential equation: 
 

 

I separate the rational expression and apply the inverse Laplace transform, giving %o7. 
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I treat the remaining two fractions according to the rules giving products including the step-
function. 

 
 
Finally I tried to automate this process, transforming back expressions generated by the  

-function in the given DE. 

 
 
This is the plot: 
 
Michel's TI-NspireCAS solution is 
given below. 
 
The students are permitted to apply 
functions provided in the ETS-library 
like ressort(). 
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In his solutions is the oscillation function ex-
pressed as piecewise defined function. Can 
we achieve this with Maxima, too? 

 

 
 

 

The function which converts the Heaviside functions into a piecewise defined function was 
provided by Frederick Henri (ETS Montreal) and is also part of the TI-Nspire library. 

Back to the above question: 

Yes we can express the answer as a piecewise defined function with wxMaxima: 

 
 
Notice the nice "forget"-function! 
 
Now we can build the solution function in the requested form and then plot its graph again. 
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Question b) needs some competence in trig manipulations supported by the CAS: 

 

 
 

As this conference series was started in 1992 as a DERIVE conference I'd like to finish with the DE-
RIVE treatment of this challenge. 

The Dirac--function has not been implemented in DERIVE. 2006 – after ending the "official life" of 

DERIVE Albert Rich wrote: 

The Dirac delta function can be defined as the derivative of the step function.  But because of the na-
ture of this discontinuous function, it would have to be primitively defined in Derive in order to have 
the desired properties.  
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Michel Beaudin offers a trick to implement the -function as a limit of the CHI-function. See how it 

works and how to solve the differential equation – due to the fact, that DERIVE is able to perform 
integration of the CHI-function (which is internally based on the SIGN-function). 

 

The solution is the red graph. The slider for b demonstrates the property of the -function. 

 

 

 

My Conclusions 

• Computer algebra systems significantly enhance the use of computers in teaching 

physics, far beyond simple ‘number crunching’. 

• Instead of spending time on algebraic manipulations with pen and paper, stu-
dents (and practitioners alike) can tackle more challenging problems. 

• With constant improvements and new developments in the area of CAS’, their 
potential and impact on problem solving and teaching - not only in physics - will 
increase too. 
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You are invited to download the papers from  http://rfdz.ph-noe.ac.at/acdca/materialien.html 
 
Many thanks to Leon Magiera and Michel Beaudin for 
their patience and cooperation during preparing this 
lecture. 

 
 
Thanks for your attention. 
 
 
 
All files are available on request. 
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