
The Correctness, Completeness and Compactness Standards of
Computer Algebra Systems and of School Mathematics.

Abstract:

In many cases when solving a school algebra problem (e.g. an equation) using a computer algebra
system (e.g. Derive, Maple, Mathematica, MuPAD) we get the answer that is perfectly suitable for
both the teacher and the student as well as others. Nevertheless, one may encounter answers having
some qualities  that  are disturbing when used at  school,  such as the answer being valid on certain
conditions only, solving is not brought to an end, the answer containing elements unknown at the
specific school level, etc.

The  qualities  can  be  represented  as  deficiencies  in  relation  to  correctness,  completeness  and
compactness.  Based  on  the  smoothing  of  disturbing  qualities,  the  answers  offered  by  computer
algebra systems may conditionally be divided as follows:
applicable with the help of extra explanations provided to students;
adaptable using the resources of the same computer algebra system;
unsuitable.

The paper also provides examples of smoothing possibilities.

The problems (or rather answers) treated in this paper concern division by zero and extracting the
square  root  of  a  negative  number  - from calculating 1/0  to  literal  equations  and  inequalities.  An
analysis of textbooks reveals that the standards vary. There are various conventions, e.g. assume that
variables are restricted, check solutions in the end of solving process only, and such like.

In this paper the different standards of computer algebra systems and school mathematics treatment
have been compared.
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Introduction
This  article  examines  problems obstructing  the  use  of  computer  algebra  systems in  teaching and
learning mathematics at  school. Attempts are made to systematise problems for teachers,  software
developers  and  others  related  to  answers  offered  by  computer  algebra  systems,  focusing  on  two
narrower topics (division by zero and square root extraction).

Computer algebra systems have been in use at schools for a fairly long time already. Recently, authors
of  all  the  leading  systems  have  claimed  mathematics  teaching  to  be  an  important  application  of
computer algebra. Nevertheless, the implementation of computer algebra software is not always as
quick as desired. Comparing the situation of software in algebra with that in dynamic geometry, for
instance,  the main obstruction seems to  be that  in many cases  teachers  are  not  satisfied with the
results put out by computer algebra systems. In many cases when solving a school algebra problem
(e.g. an equation) using a computer algebra system (e.g. Derive, Maple, Mathematica, MuPAD) we
get  the  answer  that  is  perfectly  suitable  for  both  the  teacher  and  the  student  as  well  as  others.
Nevertheless,  one may encounter  answers having some qualities  that  are  disturbing when used at
school, such as the answer being valid on certain constraints only, the answer containing elements
unknown at the specific school level, in equation solving, extraneous roots are also issued, etc. Such
cases create difficulties for students and also pose problems for teachers. It may even be said  that
many teachers don’t understand some of the answers given by a CAS. (Typical questions are: „Why
does it give this answer?“, „Why is this antiderivative different from that in the solution book?“, or
„Why could it not solve this equation?“) As long as teachers have questions like this, they will not
want to use these systems in their teaching – simply because they are afraid that their students might
ask similar questions ... ([Kokol-Voljc & Kutzler 2002]).

The author of this article has studied the capabilities of computer algebra systems in solving school
mathematics problems over several years ([Tonisson 2002a], [Tonisson 2002b], [Tonisson 2002c]).
The experiments painted a generally positive picture, which, however, included a number of cases
where  the  answers  to  problems by some or  all  systems were  either  slightly  different  from those
expected at the school lesson or given in substantially different forms/terms, or such like. At the same
time, it  is clear that only in very rare cases can the answers provided by software applications be
considered outright erroneous. Why, then, do computer algebra systems give different answers than
those expected at school? Do the authors of the systems deem the correct answer to a problem to be
different  from what it  is  in school  mathematics?   B. Kutzler  recommended analysing the material
gathered with respect to the correctness, completeness and compactness of answers. These concepts
can be defined, and, accordingly, related to one other, in a different manner. The section 2.2 provides
a more detailed description of the concepts of correctness,  completeness in the sense of branches,
completeness in the sense of being brought to completion and compactness.

This article provides examples where the answers are significant in the light of the school treatment.
The examples are classified in the system of correctness-completeness-compactness. The examples
are analysed from the point  of view of the school mathematics and discussed with regard to their
reasons and possibilities of smoothing. (The work also involved consultations with the developers of
computer algebra systems.) In some cases, these features are not so much defects as features offering
new possibilities.

It may be stated that the two obvious reasons why the answers obtained by applying the so-called
traditional commands and settings differ from those expected at school are:
1) the fact that in computer algebra systems different assumptions are used, for example the default
domain is complex numbers whereas at school it is made up of a set of real numbers, or of an even
narrower subset;
2) the mathematical and programming inaccuracies (or dissimilar understandings) of the authors of
computer algebra systems.
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These reasons do not cover all the cases, however. One of the objectives of this article is to find a
more exhaustive set of reasons.

It is not a new discovery that the computer algebra systems do not always work as expected, and that
there are bugs as well as theoretical and practical limitations. One of the most important articles in the
field is [Stoutemyer 1991]. The concluding remarks of that article were relevant back then just as they
are relevant today:
The goal here to inspire caution. These systems can be extraordinarily useful if users are aware of
underlying assumptions and of their responsibility to verify results.

The current article examines the issues related to division by zero and extracting the square root of a
negative number in solving the central algebraic problems – calculation, simplification and solving
equations and inequalities.  In such problems, the value of  expressions may with some variable or
subexpression values (for instance, zeros or negative numbers) be indeterminate. The first chapter of
the article explores the rules applied at school in dealing with such situations – what to write in the
solutions that involve division by zero or extracting the square root of a negative number. There exists
probably no uniform school standard that  would be internationally applicable;  in addition,  several
differences may occur even within one country. This article is based mainly on Estonian textbooks,
but a number of textbooks in English were used as well. Different materials as well as different parts
of the same material  may provide different  possibilities of interpretation. Furthermore, the teacher
may adjust some textbook requirements. Consequently, the school treatment given in this article is
rather  of  an illustrative  nature  and  may not  be  precisely  applicable  in  the  various  countries  and
textbooks.  Nevertheless,  it  provides  a  suitable  frame  of  reference  for  the  examples  of  computer
algebra systems.

The second chapter of the article  describes a choice of the answers provided by computer  algebra
systems Derive 6 (2003), Maple 8 (2002), Mathematica 4.2 (2002) and MuPAD 3.0 (2003).  The same
chapter explains the basis of classification of the examples and the role of number domains. The third
chapter presents the examples in more detail: the answers of different computer algebra systems are
compared with each other, with the results expected in the school and with mathematics in general.
Attempts are made to explain why one or the other computer algebra system works in this or the other
way. A summary of recommendations for smoothing out disturbing features is given in the fourth
chapter. As well, a set of problems is presented by which the teacher can determine how the system at
their disposal behaves at critical points.

If not specified otherwise, use is made of the corresponding basic commands (for instance, Solve,
Simplify) and default settings of the computer algebra systems. The problems have mostly been taken
from textbooks,  with  only  an  occasional  one  being  specifically  composed.  In  this  article  quotes
borrowed from textbooks, etc.  are  presented in  italics and answers  recommended in  textbooks in
Courier type.

1 Division by zero and square root extraction at school 

1.1 Calculating

In the interests of future discussions this chapter also provides an overview of the school treatment,
which could set up certain background for further examples. The following overview is based on a
number  of  school  textbooks,  handbooks  and  problem  sets  written  in  the  English  and  Estonian
languages. Hereinafter they are simply called textbooks. Although the explanations and requirements
additionally  given  by  the  teacher  at  the  lesson  play  an  important  role  textbook  treatment  may
obviously  be considered as setting the  standard.  We try to find  out what  the school  mathematics
standard is for treating indeterminacy-causing cases in division and square root extraction. What does
the student learn in theory and what they are recommended to say and to write in the solutions of
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problems where expressions may include division by zero or extracting the square root of a negative
number? 

With respect to division by zero, the school sources studied are unanimous, namely that  division by
zero is undefined. This is explained by means of multiplication. An important argument is the fact that
multiplying by 0 always results in 0. What, then, must be given as the answer for 1/0? But what about
0/0? In general, the answer provided for the first case in textbooks reads  not defined (or such
like). Some textbooks give the same answer for 0/0 while others read indeterminate.

The situation is analogous for square root: There is no square root for a negative number, for among
the numbers as yet known to us there is no such number whose square is negative ([Form 8]).

How must theoretical knowledge be applied to problem solving? The understanding is cultivated in
the student that division by zero and extracting the square root of a negative number are something
special and must somehow be avoided. Whether the avoidance should be effected by the compiler or
the solver of the problems is in most cases not explicitly stated. Some textbooks do not even contain
any “suspicious” calculation problems (e. g. 1/0, 4 ), thereby precluding student concerns. Others
still  containing such problems politely state in the directions:  Divide if  you can. Explain why you
cannot.

With respect to numerical expressions the teaching received from the theory section is adequate and
the  solutions  can  be  recorded  without  problems.  Occasionally,  of  course,  expressions  like  not
defined (or  such  like)  must  be  used.  Difficulties  may  arise  with  problems  where  a  more
complicated subexpression, whose value actually equals 0, is reduced without calculation. As a rule,
however, such problems are not included in textbooks.

1.2 Simplification

The situation changes when variables appear in problems (including in denominators or under square
roots).  This  results  in  expressions  whose  value  is  determinate  at  some  variable  values  and
indeterminate  at  others.  Simplification  (including  reduction)  of  expressions,  multiplication  of
equations by fraction denominators, etc., may result in new expressions whose domain of definition
differs from the original one. According to the textbooks, what should be written in the solutions
while performing such transformations?

First, the distinguishing of critical situations is taught; for instance, problems are presented: 
Find the domain of the expression. What values of variable x have a square root?
When transformation problems emerge, however, the distinguishing of forbidden values is discarded,
and the practice is even “legalised”.

Even though not  always explicitly  stated,  we always assume that  variables  are restricted so that
division by 0 is excluded ([Barnett & Ziegler 1989]).

The equality is valid only at such variable values where the value of either side of the equality is

calculable.  For  instance,  the  equality  
xx

xx
x

x
)1(1 





 is  valid  only  where  x≠0  and  x≠1.  As

mentioned above, such restrictions are henceforth not explicitly stated in the equalities ([Form 9]).

An important difference with respect to irrational expressions is only that it is normally assumed,
without adding conditions to expressions, that the variables in the expressions have only such values
at which all the radicands are positive ([Form10]).

Simplify. All variables represent positive real numbers ([Barnett & Kearns 1990]). 
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Unless stated to the contrary all variables are restricted so that all quantities involved are real
numbers ([Barnett & Ziegler 1989]).

Such  conventions  allow  the  students  to  remorselessly  reduce,  expand,  isolate  variables  from the
radical, etc. Without a thought to division by zero or extracting the square root of a negative number.

1.3 Equations

In solving expression simplification problems such legalised disregard for forbidden values results in
no direct  contradictions.  The  problem resurfaces,  however,  when solving fractional  equations  and
radical equations. This results in extraneous roots, for such transformations are used in solving that do
not ensure the obtainment of an equation equivalent to the preceding one (for instance, the squaring or
multiplication by a certain expression of either side). However, the textbooks recommend precisely
such transformations.  Different  variants are used in the textbooks to obtain  correct  final  answers.
With  respect  to  fractional  equations  some textbooks  (e.  g.  [Barnett  & Ziegler  1989])  recommend
separating  such  variable  values  that  turn  the  divider  into  zero  already  in  the  initial  phase  of  the
solution process (for instance, before multiplying the fractions by the common multiple). Thus also
legitimises  multiplication  by the  common multiple  (i.e.  guarantees  the  equivalence  of  equations).
Other textbooks (e. g. [Form 9]) instruct to separate extraneous roots at the end of the solution process
by replacement into the original equation. Indeed, in radical equations extraneous roots are separated
only at the end of the solution process. Replacement of potential solutions into the original equation is
the main technique in solving such equations.

Even before fractional or radical equations the student is introduced to linear and quadratic equations.
Although division or square root extraction cannot initially be seen in these equations the student
comes to face these techniques during solving.  With respect to linear equations, the issue of division
by zero emerges in an equation containing 0x on one side and a number other than zero or zero (so-
called pseudo-linear equation) on the other. According to the textbook [Form 7] the answer in this
case is
The solution set of this equation is empty set .
or
The solution set of this equation is the entire set of numbers known
to us, that is, the rational number set Q.
respectively.

With respect to quadratic equations the formula requires division by zero where the quadratic term
coefficient proves to be zero (the so-called pseudo-quadratic equation); in actual fact, the equation
degenerates into a linear equation on such occasions. The problem of square root extraction emerges
where the discriminant is negative, in which case the textbooks recommend the following answer: 
The given equation has no real solutions.

1.4 Literal equations and inequalities

At  school  literal  (parameter-containing)  equations  are  also  encountered.  These  appear  both  as
independent problems and within various formulas. An example might be the solution formula of the
equation ax2 + bx + c = 0. In literal (parameter-containing) equations the solution branches out by the
values of the parameter(s). Depending on the complexity of the problem such branches may be fairly
many in number. The minimal case considered correct in some way would be one where it is assumed
by  default  that  the  parameter  has  no  “suspicious”  values,  and  then  only  the  main  branch  is
calculated. This is often assumed in applied problems (physics,  etc.) (A=P+Prt;  please express r).
The next level is where it is  recorded with the main branch what parameter values result in the
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branch. The most thoroughgoing is the level where all the cases are shown separately.  For instance,
the answer to the equation ax2 + 2x + 1 = 0 is ([Form 10]): 

If  a=0, then  x=-0,5; 

if     1;00; a , then 
a

ax 


11 ;

if a>1, then no solution.

With respect  to the fractional inequality it  is noted that  the danger of the denominator being zero
should be heeded. 
Note: On the other hand, P/Q is not defined at the real zeros for Q (division by 0 is not permitted),
and the zeros for Q must not be included in the solution set ([Barnett & Ziegler 1989]).

The solution must not contain those values of x that turn the denominator into zero. 
(In the example, x≠0 is carried along.)

With respect to the fractional inequality, the danger of division by zero is rather indicated as a note.
With respect to the radical inequality the explanation is more detailed, with the domain of definition
being mentioned:

An inequality, including a radical inequality, generally has infinitely many solutions. It is therefore
not possible to eliminate extraneous roots from inequalities by means of solution checks. In solving
radical inequalities one must be confined to those transformations not resulting in extraneous roots.
In this case such a transformation is the squaring of the sides of the inequalities provided both sides
have positive numbers. Apart from that, the domain of the inequality must be considered in recording
the  answer.  The  domain  of  the  inequality  is  formed  of  those  variable  values  at  which  all  the
expressions appearing in the inequality are determinate ([Form 10]).

With respect to parameter-containing inequalities branches are normally treated in more detail, since
apart from checking an expression’s equalling with zero by parameter values also important are the
positivity and negativity of the expression.

1.5 Branches

We try to describe everything given in the preceding from the perspective of responding to forbidden
branches. We understand a forbidden branch as being a branch containing zero in the divider or a
negative number under the square root sign.

Topic  Is responded  Is not responded
Calculating
(Degenerate case, always
one branch) 

not defined,
cannot

Simplification we  assume  there  are  no  forbidden
branches 

Fractional equations to separate at the beginning
extraneous roots to be eliminated at the end 

Radical equations extraneous roots to be eliminated at the end
Linear  and  quadratic
equations 

the solution set is the
entire number set known to us
there are no real number
solutions;
the solution set is the empty
set
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Fractional  and  radical
inequalities

to observe the domain

Literal equations all the branches separately sometimes (e.g. in applied problems)
Literal inequalities all the branches separately 

In the sense of branches, then, forbidden branches are not discussed separately in rather many cases,
particularly where simplification is concerned. The elimination of extraneous roots at the end can be
categorised in several ways – on the one hand no response is given initially but on the other it is still
given ultimately.

It may be assumed that completeness is rejected for the sake of compactness. Apparently, it is more
complicated as well as more time- and space-consuming to (repeatedly) record several branches and
special cases. Furthermore, repeated recording entails the danger of oversights, etc. As well, it is more
difficult  to  grasp  the  answer  where  it  contains  many special  cases  and  branches,  which  distract
attention from the main line. For the sake of compactness leaving out special cases in simplification is
allowed. Their separate recording would shift the focus of the problem: instead of simplification most
of the time would be spent on finding the forbidden points. In recording, it might also be pointed out
whether it would be sufficient to say something concerning the entire expression contained under the
radical sign or in the denominator or the respective variable values should be found separately, which
would require particularly much work. As in simplification special values are not recorded for the
sake of compactness, similar tendencies can be observed with equations. The technique of replacing
extraneous roots into the original equation may be termed as temporary disregard of dangers. The
solution to an equation is checked only at the end, it is not added all the time.

In conclusion, it may be said that the standard proves to be thematically dynamic: in theory the matter
is clear; however, the scheme given in the presentation of the theory is consistently implemented only
in  solving  numerical  problems  and  with  parametric  equations.  With  respect  to  transformation  a
compromise is made, which is dangerous in equation solving and is either discarded or compensated
for by inserting an extra step into the solution algorithm.

2 Choice of examples and base for classification. Number
domain

2.1 Examples

Reviews of answers given by computer algebra systems have already been performed in the past, of
course. The most comprehensive of these is presented in an article  Wester 1999] where Michael
Wester examines hundreds of problems related to different computer algebra systems. (In reply to my
inquiry, Wester stated that no subsequent tables like his have come to his knowledge.) Unfortunately,
the table does not contain particularly many problems directly related to school, and the reviews have
not been provided from the perspective of school mathematics. Understandably so, because computer
algebra  systems were  primarily  developed  to  support  mathematicians  in “doing mathematics”.  As
were such reviews.

In this article we try to evaluate, in relation to the school treatment, the answers given by computer
algebra systems in response to the commands of calculation, simplification, equation solution, etc.
Here we examine only the answer, since the commands under study solve problems in a single step, as
a “black box”. Computer algebra systems have their own interior standards. These are not necessarily
well-documented. This article tries to introduce these standards with the help of examples.

Many textbook examples are examined as well as further problems developed from these examples.
Only the  examples  in which the  answers  are  interesting from the point  of view of the school  are
presented in this article. The examples are arranged by their mathematical topics. 
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Topic Problem Problematic answer (System)
Calculating

1/0   (Derive)
4 2i (All, by default)

0/sqrt(0) 0 (Maple)
Simplification

x
x97 97 (All) 

Is x=0 recorded separately?
Linear equation

0a=0 C (MuPAD)

Quadratic equation
(4x-1)(x+3)=5x(0.8x+2)

(MuPAD)
The correct answer is 3. 

Fractional equation

1
5

5
9

54
15

222 





 xxxxx
-9 and   (Derive)

0
x

xx 0 (All)

Radical equation
xxx 2362  -27/7 and 3 (All, by default)

At school only 3.
Literal equation

ax=1 To what extent are branches presented?
Different  systems (and  sometimes the  different
commands) work differently. 

ax2+bx+c=0 To what extent are branches presented?
Different  systems (and  sometimes the  different
commands) work differently. 

3(a+1)x+3a=2
)1(32

33
aa

a



 (Mathematica)

3
5

)3)(2(
12

)9)(2(
53

2 









xxm

m
xm

mx The parameter values turning the main solution
into one changing the denominator into zero are
not given separately. (MuPAD)

Literal inequality
ax>1 ax>1 (Derive)

{ } ( )signum a x 
( )signum a

a
 (Maple)

See next row.

In  the  next  section  we  will  try  to  classify  the  above  examples.  With  some  inequalities,  (e.g.
2

2 2112
aa

xx  )  MuPAD never completes the solving process. We do not discuss such problems

as a separate aspect. 

2.2 Correctness, Completeness, Compactness 

2.2.1 Correctness

The words “correctness”, “completeness” and “compactness” can be used to denote various meanings
and shades.  In this  section,  we try  to  clarify  the  concepts  used  in  this  article.  In  this  article  we
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understand  “correctness”  as  correctness  of  answer  in  a  narrower  sense.  We  leave  out  the
circumstances  falling  under  the  subsequent  aspects.  Thus,  for  instance,  we consider  correct  those

answers that have not been completely simplified (
)1(32

33

aa

a




). Or where only the main branch has

been given. In general,  we may consider that textbook answers are correct  (provided there are no
misprints or other such errors). On rare occasions, faulty answers may be encountered in computer
algebra systems.  And undoubtedly, incorrect  answers  can often be found in student  works;  these,
however, are not discussed in this article.

From the above examples,  the false answers of equation (4x-1)(x+3)=5x(0.8x+2),  the answer 0 of

equation 0


x

xx
 and conditionally also the question of solutions of radical equation (commented in

section 2.3) are suitable for this class. 

2.2.2 Completeness in the sense of branches

In problems involving division by zero and square root extraction the value of expressions may with
some variable or subexpression values (such as zeros or negative numbers) be indeterminate.  This
creates  the  need (particularly in literal  equations  and inequalities)  to add restricting conditions  to
intermediate results or answer forms, or, in some sense, to divide the solution/answer into branches.
This,  in  turn,  creates  different  possibilities  of  how  to  treat  branches.  (The  school  treatment  is
commented in section 1.5.) It is possible to make certain compromises in the treatment of branches
(for instance, not to indicate in the solution that x≠0). 

From the above examples, the example of simplification 
x

x97
 and branch-treatment of literal equation

are suitable for this class.
 

2.2.3 Compactness

The pursuit of compactness provides the motivation to discard completeness in the sense of branches.
Compactness is treated in this article only insofar as it is directly related to the topics of branches.
Herein, completeness is a kind of “inverted aspect” of completeness in the sense of branches. One of
the main criteria of compactness is whether the number of branches is such as to be graspable by the
reader.  Apart from the number of braches one must  also consider how they can be recorded in a
graspable manner in order for them not to prove overly complicated to decipher. It depends on the
particular student how much and what they can grasp. With respect to textbooks, it is difficult to point
out  a general  separate  standard.  (For instance,  that  the answer  contain no more than n branches.)
Rather, it is reduced to the standard of completeness in the sense of branches. Nevertheless, it may be
said that in textbooks as a rule forms are used to distinguish branches,  
if CONDITION then EXPRESSION 
or
EXPRESSION if CONDITION

The answer presented by the computer algebra system

may be difficult to read. In actual fact, compactness forms part of a wider set of topics – legibility in a
broader sense, notation, etc.
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2.2.4 Completeness in the sense of being brought to completion

Completeness can  also  be  considered  in  the  sense  of  being  brought  to  completion,  which  shows
whether the problem has been solved to the end – whether the answer has been simplified. This aspect
generally provides more opportunities for different approaches (for instance, whether the final answer
should  be  presented  as  a  mixed  number,  improper  fraction  or  decimal  fraction  and  whether  the
denominator  should  be  rid  of  irrationality).  In this  article,  we regard  as  violations  of  the  school
treatment such examples in which it is evident that the solution is incomplete and could be continued
in plain steps. Again, there are no such examples in textbooks.

From examples  in  the  table,  the  expression  
)1(32

33

aa

a




 and  the  unfinished  answers  of  literal

inequality are suitable for this class.
 

2.3 Number Domains

Some examples  that  seem to  be  the  examples  of  correctness  could  be  explained  through number
domains. At school, the main number domains used with these topics are the rational number set  Q
and the real number set R. (In reality, expansion to Q (or, to be more exact, to Q+) is done by means
of division and to R by means of square root). With respect to extracting the square root of a negative
number, many of those more experienced in mathematics know that 1  is i, and expanding thus to
the domain of complex numbers we can still calculate such expressions. Until then, however, we must
say even concerning the expression  2)4(   that it is impossible to find the value from among real
numbers.  Furthermore,  the  school  curricula  in  many  countries  normally  do  not  include  complex
numbers while in other countries complex numbers are a part of the school curricula. 

By the same token, the “boundary” between real and complex numbers is also essential for computer
algebra systems. Namely, by default they seem to deal with complex numbers. However, the systems
offer resources to restrict the number domain to, say, real numbers. In principle, restrictions can be
envisaged at different levels. Whether and how can

 the calculation result;
 the variable value;
 the equation (inequality) solution;
 the entire process be determined in terms of real numbers.

Different systems possess different capabilities. The answer the systems give directly to calculations
is a complex number. For instance, the answer to 4  is given as 2i. In all the systems, restrictions
can be imposed on variable values; nevertheless, not all the systems behave in the same way. In some
systems, for instance, a real number variable can be assigned a complex number value at the “user’s
own risk”.  Exclusively  real  number  solutions  to  an  equation  can  be  calculated  with  Derive  and
MuPAD. If  this  is  not  done,  however,  the  answer  to  the  equation  0*a=0  given  by MuPAD,  for
instance, would be . Other systems include symbols in the answer (such as {{}}, true, a) to show
that the equation is true for all values of the solution variable and that the exact number set cannot be
read.

Maple  and  Mathematica  allow  the  transfer  of  the  entire  process  to  the  domain  of  real  numbers
(packages  RealDomain  and  RealOnly  respectively).  Yet  with  regard  to  radical  equation

xxx 2362   this is completely accomplishable only in Maple. Namely, the solution to this
equation obtained at school is 3. By default, all the computer algebra systems give the answer –27/7
and 3. Of the two, however, -27/7 is not appropriate when operating with real numbers only, since a
negative number appears under the square root signs. Using the options in Derive (Real Solution) and
in MuPAD (assume(x,Type::Real) we still get both answers, which is actually correct, for –27/7 is
undoubtedly a real number. The package RealOnly in Mathematica also yields both answers, which is
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somewhat misleading, however,  since only operations involving real  numbers,  which may also be
interpreted as solution checking, should be permitted. Maple’s package RealDomain yields 3 alone.
(A Real Mode option which eliminates intermediate expressions which may be complex is on the list
for a future release of Derive.)

The number domain topics are conditionally represented in Derive if the answer to 1/0 is    and,

with respect to the fractional equation 
12

5

52
9

542
15







 xxxxx
, the other answer apart from -9 is

 . 

Likewise, Mathematica implies infinity in answer to 1/0: 

 
As well, the issues stated in the lexicon MathWorld ([MathWorld])

There are, however, contexts in which division by zero can be considered as defined. For example,
division  by  zero  0/z  for  0C* z  in  the  extended  complex  plane  C-Star  is  defined  to  be  a
quantity known as complex infinity.

and in the standard IEEE Std 754-1985, for instance, point to infinity. Thus, Derive behaves according
to the standard, which, however, differs from the school treatment. Apparently, the problem could be
solved by giving explanations to the student; whether they understand the explanations, however, is
another matter. 

3 Examples in more detail

3.1 Correctness

3.1.1 Automatic simplification as a cause of extraneous solution

Violations of correctness are not frequent in computer algebra systems but still occur occasionally. It
must be considered incorrect, for instance, when all the systems offer 0 as the answer to the equation

0


x

xx
.  This  answer  could  be  explained  by  the  fact  that  the  original  equation  is  automatically

transformed to equation x=0.  

We cannot approve such solutions of equations from the point of view of the school. (However, it

seems that the textbooks do not include examples like 0


x

xx
.) It is possible to justify the answers

given by the computers algebra systems by using limits (as do the developers of computer algebra
systems). Section 3.2.1 discusses some further aspects of automatic simplification. 

If we replace 0 into the left  side of the original equation and calculate  
0

00 
,  then all  the systems

behave as in the case of the division 0/0: Derive gives ?, Mathematica 
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Maple and MuPAD issue an error message. This shows that computer algebra systems do not check
the solution using replacement into the original equation,  which is usual practice with students.  It
would not be quite  possible  either,  since  automatic simplification may automatically  result  in the
alteration of the original expression. 

3.1.2 Floating point numbers

A vivid example is where MuPAD offers the (pseudo) quadratic equation 
(4x-1)(x+3)=5x(0.8x+2) instead of the solution 3: 

.

The error is due to calculation using decimals: 4-5*0.8; would result in 4.33680869·10-19 instead
of 0. Replacement of 0.8 with the fraction 4/5 would provide the correct answer.

Other  systems solve such  equations  correctly.  It  would  be impossible  to accept  these  answers  at
school or elsewhere. The inexactitude of operations with floating point numbers seems to be only a
weak argument in the case of such simple example. 

One must  also  beware  of incorrectness  when performing calculations  with floating-point  numbers
using Maple sqrt, for instance. Although 0 is shown as the answer to sqrt(0), Maple would give 0 in
answer  to 0/sqrt(0).  (The other  systems behave as  with  0/0).  sqrt(0)/sqrt(0)  would  elicit  1 as  the
answer in Maple. This inaccuracy is disturbing at school and in general. (It is corrected in Maple 9.5.)

3.1.3 Number domain

The next example might be the equation xxx 2362  , already mentioned under the number
domains, where one cannot confine oneself to the domain of real numbers.

3.2 Completeness in the sense of branches

3.2.1 Special case in simplification 

To simplification of the expression 
x

x97
 all the computer algebra systems give the answer 97, without

recording the peculiarity of x = 0. As well, the answer to 
x

xx



 42
 is –x-4 or -4-x (Mathematica). 

The  developers  of  computer  algebra  systems  justify  this  simplification  by  claiming  that  this
imprecision has a set of measure zero and limit of x/x approaches 0 is 1. In addition, the handling of
such singularities in the case of large expressions would be unpractical and most of the users expect
such simplification. 

Actually, the same simplification is done at school. It is another matter whether the computer algebra
system (or some other software application) could behave in a more precise manner and separately
record special cases. This issue has been examined in [Chuaqui & Suppes 1990], for instance, who
has offered the possibility of “carrying along” restrictions in a certain manner (e.g. as sequences). 

12



The trouble is also that the rules and order of automatic simplification is often not documented for the
user and some point, which would be important for the learning process, may unexpectedly disappear.

If  we determine  the  variable  value,  e.g.  x=0,  and  now calculate  the  value  of  
x

x97
,  then  Derive,

Mathematica and MuPAD respond as to 
0

0
 whereas Maple’s answer is 97.

3.2.2 Literal equation

If computer algebra systems solve problems whose answer comprises several branches depending on
the  parameter  values  (e.g.  the  solution  formula  of  the  quadratic  equation  ax²+bx+c=0)  then  it  is
possible  to record  all  the  branches  separately or  to focus  on the main branch only.  For instance,
MuPAD records all the branches:

solve(a*x^2+b*x+c=0,x);

Derive and Maple, however, do not deal separately with the “zero” parameter values. In Mathematica,
it depends on what command (Solve, Reduce or InequalitySolve) is run. 

The procedure is analogous for simpler parameter-containing equations. For instance, for ax=1. 

a·x = 1 (w.r.t.  x)
Derive, Maple, Mathematica Solve

a
1

MuPAD

Mathematica

Mathematica

The command InequalitySolve finds conditions that must be satisfied by real values of variable(s) in
order for the expression to be true. In case of several variables all the variables need to be recorded,
for  their  sequence  will  determine  the  form of  the  answer.  The  command  Reduce  simplifies  the
equations, attempting to solve the variables. Here it is possible and reasonable to record one variable
only. When two variables are recorded the segment a≠0 will be left out of the answer.

One of the reasons why special  cases are  not  separately recorded may be the pursuit  to keep the
answer easy to grasp – compact – and to avoid (superfluous?!) text that distracts attention from the
main line. Who cares about one or two special cases as long as the main line is correct!  

Emphasising the different branches in the school depends on the topic under discussion. In the case of
the problems of physics, nobody would probably require that a=0 should be separately recorded when
the aim is to express a from the formula f=ma. In the case of mathematical exercises, however, all
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branches should be recorded. This would be a correct procedure from the mathematical point of view
as well.
 

3.2.3 Single values that turn the denominator into zero 

MuPAD pays no special attention to the parameter values with which the solution value in the main
branch becomes such as to change the denominator in the original equation into zero. For instance, in

the equation 
3

5

)3)(2(

12

)92)(2(

53













xxm

m

xm

mx
 the answer  is

offered to the disregard of the fact that neither can a solution be obtained for m= 3
23  or m= 3

21 ,
where x would be 3 and –3 respectively, which would change the denominator in the original equation
into zero.

The authors state that 'solve' always assumes that the input is well defined. This means: if 1/(1-m)
occurs in the input, 'solve' and the property functions assume that m≠1. 

3.3 Completeness in the sense of being brought to completion

Completeness can also be understood to have a second meaning, that of being brought to completion.
There are answers in case of which the solution process has been left unfinished. Yet another issue
would be the question, what is the simplest form? 

3.3.1 Shortly before the end

There may be situations in which little has left until the end: 

(Mathematica)

and, using some other command, we can simplify further to a simpler form: 

3-3a
3+a .

In this problem it is obvious that the answer has not yet been simplified to the end, although it is not a
long way off. It is often not unambiguously clear, what is the simplest form. 

3.3.2 Clearly discontinued

However, there may also arise a situation where only a little has been done, say, terms containing
variables have been brought on one side. 

> solve(m*x-3*m<x+5,{x});
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(Maple)
It is possible to remove signums by adding assumptions:
> solve({m*x-3*m<x+5},{x}) assuming m::real,m>1;

{ }x 3 m 5
m 1 .

Sometimes they have never gotten farther from the beginning 

(Derive).

It seems that Derive solves those inequalities that after “internal” transformations have the form in
which there is a multiplication operation on the one side and 0 on the other or in which the sign of the
divisory expression can be determined, e.g. (a²+1)x > 1. Similarly, Maple seems to stop at the point
where the solution would branch out.

3.4 Compactness

Examples of compactness, particularly in relation to the number of  branches, can be examined in
combination with completeness in the sense of branches.  The examples given contain a relatively
small number of branches. However, even the solution formula of a quadratic equation may pose the
danger  of  “getting  lost”.  Examples  might  be  given  where  the  answer  is  several  screenfuls  long.
Particularly  when  solving  parameter-containing  equations  and  inequalities  with  MuPAD,  since
MuPAD issues solutions on a branch-by-branch basis but occasionally does it incorrectly by adding
branches.

Let us examine here the issue of branch legibility. After solving  
relative to x we obtain the solution , which
contains the necessary branches yet is difficult to read. In more complex problems the answers are
even more difficult to decipher. One of the reasons for the reading difficulties is that the traditional
school scheme ‘if CONDITION then EXPRESSION‘ is not followed.

According to the information from the developer of the system, the representation will be improved in
future versions.

4 Suggestions and conclusion

4.1 What to suggest to the teacher?

In order to recommend something more tangible to the teacher they must know how the computer
algebra  system at  their  disposal  functions  and  what  problem-solving  devices  could  be  used.  The
computer algebra system or version at the teacher’s disposal is not necessarily the same as one of
those discussed in this article. Following are problems that the teacher could use to test a particular
system to find out the system’s behaviour in critical cases. Some of the problems have already been
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given above while others are different (as a rule, simpler than those given above). Naturally, one can
construct a more detailed test, but even this one enables the detection of key problems.

Topic Problems What to observe? 
Calculating 1/0, 0/0 How  is  the  impossibility  of  dividing  by  zero

being served?
4 Does the answer contain imaginary units, which

are alien to school?
4-5*0.8 Is it 0?
0/sqrt(0) Is it presented as 0/0?
(0*0)/0 Is it presented as 0/0?

Simplification (97x)/x Is x=0 recorded separately?
x:=0   (x*x)/x Is  it  presented  as  0/0?  Or  is  automatic

simplification used?
Linear equation 0*a=0 How is it  presented that  the solution set  is  the

entire set of numbers? Which one?
0*a=5 How is the empty solution set presented?

Quadratic equation (4x-1)(x+3)=5x(0.8x+2) Are the solutions correct?
Fractional equation

1
121



xxx

Is infinity given as the answer?

(x*x)/x=0 Is  it  given  as  the  answer  that  there  are  no
solutions?

Radical equation 1x
12  xx

xx  22

Are those solutions also given that turn the root
base into a negative number?

Literal equation a*x=1 To what extent are branches presented? 
ax2+bx+c=0 Is it graspable if there were more branches?

3
5

)3)(2(
12

)9)(2(
53

2 









xxm

m
xm

mx

m
m

x 


 12
1

Are  the  parameter  values  turning  the  main
solution into one changing the denominator into
zero given separately?

Literal inequality ax>1 Is the problem solved to the end?
ax>0 Is the problem solved to the end?
(a^2)x>1 Is the problem solved to the end?
2*(a+1)*x=1 Is the problem simplified to the end?

In testing it is also necessary to observe whether appropriate premises, domain, etc. are established.
As well, different commands might be tested apart from the so-called main commands. 

If the teacher has identified the behaviour of a particular system and its shortcomings they have to
decide how to surmount the undesired effects. Based on the smoothing of disturbing qualities,  the
answers offered by computer algebra systems may conditionally be divided as follows:
adaptable using the resources of the same computer algebra system;
applicable with the help of extra explanations provided to students;
unsuitable.

Interestingly, the reasons for and surmounting of many problematic effects can be explained in terms
understandable at school:

 check the solution by placing it into the original equation (however, it might not always help);
 not simplified until the end;
 inexact calculation.

There are many ways to use a computer algebra system for rendering the solution more suitable “on
the spot”. We categorise them as follows:

 Changing the domain of definition or other premises. 
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 (Additionally) Selecting another command. 
o Performs better (e.g. In Mathematica, InequalitySolve works more accurately than

Solve).
o Continues (e.g. Simplify).

 Changing the expression or equation (e.g. using 4/5 instead of 0.8).
 Using “human” activities.  (e.g. replacement of the solution into the original equation).
 Writing of short programs by which the above-mentioned devices can be implemented in a

more automated manner.

Although  it  may  be  possible  to  invent  other  possibilities  the  list  can  in  a  sense  be  considered
exhaustive. Undoubtedly, better results can be obtained if the makers of computer algebra systems
themselves develop the systems in this direction.

Indeed,  explaining  the answer is  almost  always possible  in  principle. For  the  explanation  to  be
adequate and convincing, however, the teachers themselves should know as precisely as possible why
the computer algebra system gives just the answer it gives. If there is a clear and rational computer
algebra system standard it can be explained in a simpler manner. It would be particularly good if the
terminology understood at school could be used. Although in several cases it could be done, in other
cases the explanation may prove to be too complicated for the respective age. As well, it must be
observed whether the explanations are linked with the syllabus. Reasonable linking allows approaches
that are developing and appropriate. 

Apart  from  explanations  it  must  be  decided  whether  the  answer  is  satisfactory  or  should  be
complemented or improved manually, for instance.

4.2 Conclusion

In conclusion,  it  may be said that  to investigate  the answers given in  textbooks and by computer
algebra systems such a system-method can be used where correctness and completeness in the sense
of branches and in the sense of being brought to completion are treated separately. Virtually all the
problematic cases within the topics under study can be discussed under these aspects in the course of
the treatment of the number domain. In problems related to these topics, particularly noteworthy is
completeness  in  the  sense  of  parts,  for  which  different  textbooks  present  different  conventions
(apparently for the sake of compactness). Other components come into greater focus when analysing
the answers given by computer algebra systems (and apparently also those given by students, which
are not discussed in this study).

On  some  occasions,  the  school  treatment  and  the  different  computer  algebra  system  standards
coincide (e.g. no recording singularities in simplification) while on others they do not. One system
(particularly Mathematica) may feature different commands bearing more or less affinity with school
mathematics.

The  reasons  for  the  deviations  from the  school  treatment  are  various.  They  can  be  exhaustively
classified as follows:

 The number domain or other premises differ from those used at school; 
 Inaccuracies in designing, programming, etc.;
 For the sake of the compactness of the output or programming or resources some answers are

not treated separately or to the end.

Some of these (d)ef(f)ects are easier to explain and surmountable “on the spot”, particularly those that
can be  explained  (and  surmounted)  in  terms  understandable  at  school.  Unfortunately,  not  all  the
possible explanations are necessarily fit for the age of the students. Some of the effects are of a more
complicated nature and would apparently require the changing of the computer algebra system. Or the

17



existence of an intelligent intermediate program between the student and the computer algebra system
([Prank & Tonisson 2001]). Interestingly, some problems can be surmounted using fairly simple, so-
called schoolchildish devices, such as checking the solution of an equation by replacing it into the
original equation. In the future it is planned to study programming possibilities of computer algebra
systems in order to make more school-friendly procedures. 

There also arises the question whether the computer  algebra system should put out more than the
student should write on paper. For instance, to show the special cases, even though this is not done at
school  (e.g.  in  simplification).  If  there  is  the  danger  that  this  results  in  the  output  losing  its
compactness the showing or hiding of special cases may be made optional for the user.

Virtually every section of the study can be investigated in more detail (in part, I have already done
that) and written about in an article. Newer versions (particularly those of Maple and Mathematica)
and other systems should be explored. Undoubtedly, such reviews can and must be done on other
topics as well. The first priority would be problems related to cube root and other radicals, as well as
those related to logarithm-taking. The treatment of square root  can also be developed into that  of
absolute value. For instance, the textbook presents the convention  “Accordingly, if not specifically
required, we write ya  instead of yaya 2  ([Form 10]).

This topic also overlaps with the issues of equivalence of expressions (or equations), which, among
other things, poses greater mathematical challenges.

Although  the  article  may seem to  mainly  concern  negative  aspects,  the  author  is  convinced  that
computer algebra systems have an important role to play in improving mathematics teaching, and the
rectification of small defects would help to better perform the task.
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