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Abstract: We will show that the present stage of development of computer hardware and
software enables to solve many elementary and non elementary problems of classical geome-
try. Whereas classical methods show the beauty of geometry, enable better insight into the
situation and better understanding the problem, on the other hand by computer methods
we can solve complex elementary and non elementary problems. Computer algebra methods
enable automatic proving theorems of elementary geometry, automatic derivation and dis-
covery of geometric formulas, construction of geometric objects which have given properties
and which cannot be easily done with a ruler and compass, etc.
On a few examples from geometry of polygons in a plane the strengths and weaknesses of the
both methods are demonstrated. It is shown that both classical and computer methods are
helpful in teaching mathematics.
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1 Introduction

During several last semesters one of the authors lead a geometry seminar on using computer
methods to solve problems in elementary geometry. The students, who took part in this
seminar were participants of the branch of teacher’s training in mathematics in their 4th

years university study, i.e., they had knowledge of the basic courses in geometry.

In the seminar such methods were stressed which are based on Groebner bases computations.
We used the theory of elimination to prove and discover statements from geometry in a plane
and a space. We also used this theory to carry out constructions of geometric objects which
have given properties and which is not easy to construct by the rule and compass, see [6], [8],
[13], [14].

Starting from the statement that the heights of a triangle are concurrent, we investigated
both by computer and in a classical way well known problems such as the formula of Heron
for the area of a triangle and its generalization – formula of Brahmagupta for the area of an
inscribed quadrilateral given by the lengths of its sides, formula of Staudt, Wallace-Simson
theorem, Napoleon theorem and further similar topics. The construction of a square with

1This work has been supported by the grant MSM 124100006
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the vertices on the four given straight lines in a plane is shown as well.

At the end of the seminar students were engaged in the seminar work, which was aimed on
a problem chosen by each student from the recommended offer list from Internet. Here the
problems were solved both in a classical and computational way.

2 Automatic theorem proving

Automatic theorem proving concerns with geometry statements of equality type, which are of
the kind H ⇒ c, where H is the set hypotheses and c the conclusion. At first we algebraize
the geometric problem. This stage is characterized by establishing the set of hypotheses H
whose algebraic form are polynomial equations

h1(x1, x2, . . . , xn) = 0, h2(x1, x2, . . . , xn) = 0, . . . , hr(x1, x2, . . . , xn) = 0

and the conclusion c, which is expressed by the polynomial equation

c(x1, x2, . . . , xn) = 0,

where the polynomials have coefficients in a base field K. We usually assume that K = Q,
the field of rational numbers. Thus the algebraic form of the statement would be

∀x {(h1(x) = 0 ∧ h2(x) = 0 ∧ . . . ∧ hr(x) = 0) ⇒ c(x) = 0.} (1)

The objective of the next step is verification of (1), i.e., to decide whether the conclusion
follows from the hypotheses or, which is the same, to decide whether the zero set of the
conclusion c contains the zero set of the hypotheses H, i.e., Zero(H) ⊂ Zero(c). By the famous
Hilbert Nullstellensatz the statement (1) is true iff 1 belongs to the ideal (h1, . . . , hr, ct − 1)
of the hypotheses polynomials and the negated conclusion. However for the most geometry
problems it suffices to show that c belongs to the ideal (h1, . . . , hr). The simplest way to show
the essence of automatic theorem proving is a demonstration on the example. Let us have
the following problem.

Prove that the heights of a triangle are concurrent.

The first stage of the automatic proving theorem is to choose an appropriate coordinate
system to describe the situation analytically, see Fig. 1. The rule is to choose the coordinate

Figure 1:

system in such a way so that we could describe the situation very simply. We place the origin
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at the vertex A and the axis x into the side AB of a triangle ABC and denote the coordinates
of the vertices of the triangle ABC by A = [0, 0], B = [a, 0], C = [b, c]. Now we express the
equations of the heights ha, hb, hc in this chosen coordinate system

ha : (b − a)x + cy = 0,
hb : bx + cy − ab = 0,
hc : x − b = 0.

Suppose that the heights hb and hc intersect at the point O = [x0, y0], i.e. the following
hypotheses equations are fulfilled

O ∈ hb ⇔ bx0 + cy0 − ab = 0,
O ∈ hc ⇔ x0 − b = 0.

As the conclusion we want to show that the height ha contains the point O, i.e., that

O ∈ ha ⇔ (b − a)x0 + cy0 = 0.

Hence we are to prove the statement of the following form

∀x0, y0 bx0 + cy0 − ab = 0 ∧ x0 − b = 0 ⇒ (b − a)x0 + cy0 = 0. (2)

In this very simple case we are able to show that the statement above is valid even by hand.
To do this realize that

(b − a)x0 + cy0 = (bx0 + cy0 − ab) − a(x0 − b).

We expressed the polynomial of the conclusion (b− a)x0 + cy0 as a linear combination of two
hypotheses polynomials bx0 + cy0 − ab and x0 − b. Thus from the equations bx0 + cy0 − ab =
0, x0 − b = 0 the equation (b − a)x0 + cy0 = 0 follows.
We can also equivalently say that the set of all the common solutions (or zeros) of the system
of equations bx0 + cy0 − ab = 0, x0 − b = 0 is a subset of all solutions of the equation
(b − a)x0 + cy0 = 0.
From the algebraic point of view we are to show that the polynomial (b− a)x0 + cy0 belongs
to the ideal I = (bx0 + cy0 − ab, p − b). The decision of whether a polynomial f belongs
to the given ideal I or not, is possible by the command NF(f,I) which is implemented in
most mathematical software. Simply spoken the command NF(f,I) or Normal Form of f
with respect to the ideal I returns the reminder of a polynomial f if we express it by all
the possible algebraic linear combinations of the polynomials from the ideal I. If NF(f,I)=0
then the remainder equals zero and the polynomial f belongs to the ideal I. The whole
process is a generalization of the well known Euclidean algorithm for division of polynomials
of one variable and is based on Groebner bases computations. See the nice book [6] where
the problem is described into details. In the program CoCoA2, the software which we will
use in this article, we enter

Use R::=Q[abcx[0]y[0]];
I:=Ideal(bx[0]+cy[0]-ab,x[0]-b);
NF((b-a)x[0]+cy[0],I);
0

2Software CoCoA is freely distributed at cocoa@dima.unige.it

3



The answer is 0, i.e. Normal Form of (b − a)x0 + cy0 equals zero, which means, that the
polynomial (b−a)x0 + cy0 belongs to the ideal I = (bx0 + cy0 −ab, x0 − b) and the statement
is valid. The automatic proof is complete.

Usually the situation is not so easy. Most geometry statements are valid under some non-
degenerate (also called subsidiary) conditions such as points being distinct, three distinct
points being not collinear, line segments of nonzero lengths, circles of nonzero radii, etc. The
non-degenerate conditions can be algebraically described by the inequalities

g1(x1, x2, . . . , xn) �= 0, g2(x1, x2, . . . , xn) �= 0, . . . , gs(x1, x2, . . . , xn) �= 0.

Thus adding these non-degenerate conditions to the hypotheses (h1 = 0, h2 = 0, . . . , hr = 0)
a geometric statement can be translated into the form

∀x {(h1(x) = 0 ∧ . . . ∧ hr(x) = 0 ∧ g1(x) �= 0 ∧ . . . ∧ gs(x) �= 0) ⇒ c(x) = 0.} (3)

The statement (3) is true iff 1 belongs to the ideal (h1, . . . , hr, g1t1 − 1, . . . , gsts − 1, ct − 1),
which consists of the hypotheses polynomials, non-degenerate conditions and the negated
conclusion. However for the most geometry problems it suffices to show that c belongs to the
ideal (h1, . . . , hr, g1t1 − 1, . . . , gsts − 1).
The question now arises: ”How to find non-degenerate conditions?” One way is to determine
them before the computation, i.e., to rule out the situations such as two points coincide, three
points are collinear,... But this method need not be successful. It is not easy in general to
determine all possible non-degenerate conditions. The better way consists in the elimination
of all dependent variables, i.e. those variables which we choose arbitrarily, and a slack variable
t in the ideal (h1, . . . , hr, ct − 1) of hypotheses polynomials and the negated conclusion. We
get the elimination ideal, which contains polynomials in only independent variables. This
elimination ideal contains degenerate conditions, say g1, g2, . . . , gs (if there are any). We
negate these conditions to obtain the set of polynomials g1t1 − 1, g2t2 − 1, . . . , gsts − 1 and
add this set of non-degenerate conditions to the ideal (h1, h2, . . . , hr). Instead of the ideal
(h1, h2, . . . , hr) we have the new ideal (h1, h2, . . . , hr, g1t1 − 1, g2t2 − 1, . . . , gsts − 1) and
explore whether the conclusion c follows from this new ideal. The whole process now will
repeat. Let us look at the next example.

In the example above, suppose that instead of the heights hb and hc now the heights ha

and hb intersect at the point O, i.e. suppose that the equations (b − a)x0 + cy0 = 0 and
bx0 + cy0 − ab = 0 are fulfilled. Then the conclusion is that the height hc contains the point
C, i.e., x0 − b = 0. We enter

Use R::=Q[abcx[0]y[0]];
I:=Ideal((b-a)x[0]+cy[0],bx[0]+cy[0]-ab);
NF(x[0]-b,I);
x[0]-b

The answer is x0 − b which is not zero and the polynomial is not the element of the ideal
I. Despite of this the statement can be valid. In such cases non-degenerate conditions
should be determined. In order to find non-degenerate conditions we will add to the ideal
I = ((b − a)x0 + cy0, bx0 + cy0 − ab) one more polynomial (x0 − b)t − 1 to obtain the ideal
J = ((b−a)x0 +cy0, bx0+cy0−ab, (x0−b)t−1) where t is a slack variable. By the polynomial
equation (x0 − b)t − 1 = 0 we can express the fact that the equation x0 − b = 0 doesn’t hold
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for any value x0. If it does then 1 belongs into the ideal I and related zero set of I would be
empty. Hence adding the polynomial (x0 − b)t to the ideal ((b−a)x0 + cy0, bx0 + cy0 −ab) we
suppose that the statement is not valid while all the other conditions are preserved (similarly
as by the proof by contradiction). By the elimination of variables x0, y0, t from the ideal
J which is accessible by the command Elim(x[0]..t,J) we will eliminate the dependent
variables x[0], y[0], t from the ideal J to obtain those polynomials from J which depend only
on the remaining independent variables a, b, c. We enter

Use R::=Q[abcx[0]y[0]t];
J:=Ideal((b-a)x[0]+cy[0],bx[0]+cy[0]-ab,(x[0]-b)t-1);
Elim(x[0]..t,J);
Ideal(-a)

and get the only condition a = 0. It means that in the triangle ABC the vertices A and B
coincide. We will exclude this case by addition of the non-degenerate condition at− 1 = 0 to
the ideal I to obtain the ideal K = I ∪ {at − 1}.
Now we have

Use R::=Q[abcx[0]y[0]t]
K:=Ideal((b-a)x[0]+cy[0],bx[0]+cy[0]-ab,at-1);
NF(x[0]-b,K);
0

The proof is now complete also in this case. Why it was necessary to exclude the case a = 0
can be seen from the equality x0 − b = 1/a((b − a)x0 + cy0) − 1/a(bx0 + cy0 − ab), where
the polynomial x0 − b is expressed as an algebraic linear combination of the polynomials
(b − a)x0 + cy0 and bx0 + cy0 − ab but one exception, namely a = 0.
We have seen, that two almost the same modifications of the problem can cause unexpected
difficulties. See [5], [10], [9], [15], [18] for further study.

3 Solving problems

In this part we will be concerned with solving problems both in a computational and classical
way. The purpose is to see two different attitudes to solve problems.
Now we will finish the classical proof of the statement above – the heights of a triangle in-
tersect at one point O, which we have proved in the first part automatically.
For a synthetic proof we can use e.g. the following way. We first draw a triangle ABC
with the given heights ha, hb, hc, see Fig. 2. The straight lines through the vertices A,B,C
which are parallel to opposite sides BC,AC,AB of the triangle ABC respectively form a new
triangle A′B′C ′. Note that A is a midpoint of B′C ′, B is the midpoint of A′C ′ and C is the
midpoint of A′B′. The heights ha, hb, hc of the original triangle ABC are now perpendicular
bisectors of sides of the triangle A′B′C ′. Thus it suffices to show, that they meet at one
point. Suppose that ha and hb intersect at the point O, hence it holds |OB′| = |OC ′| and
|OC ′| = |OA′|. From which |OA′| = |OB′| follows and we get that O is the point of hc.
We can also use Ceva theorem or another way to prove our statement. But for all the classical
proofs it is necessary to have a key idea, which leads to the solution of the problem.
We proved it both in a classical way and in an automatic way. The both methods have their
strengths and weaknesses.
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Figure 2: Heights of 	ABC are concurrent

The classical way used some knowledge from geometry (we have to determine that the ver-
tices of ABC are the midpoints of the sides of the new triangle A′B′C ′ then to prove that
perpendicular bisectors of the sides of A′B′C ′ intersect at one point), give us a good overview
about the problem, but had one weakness - we had to have the key idea. Which is not always
easy to find.
On the other hand the automatic proof only needs knowledge of writing the equations of
straight lines. The computation was quite automatic. But this method was not so geometric,
was not so beautiful and sometimes some unexpected problems, in this case non-degenerate
conditions, can occur.
The both method should be combined and used in practice.
To describe automatic discovery, we usually start with the formula of Heron. As this is the
well-known case will present this theory on the less known next problem.

Let ABCD be a planar quadrangle with sides a, b, c, d and diagonals e, f . Find the formula
for the area p of a quadrangle ABCD.

First we discover such a formula by computer. As the second step we derive this formula by
a classical method.
Choose the coordinate system so that the vertices of a quadrangle ABCD be A = [0, 0], B =
[a, 0], C = [x, y],D = [u, v] and a = |AB|, b = |BC|, c = |CD|, d = |DA|, e = |BD|, f = |AC|,
Fig. 3 We have following relations:

(x− a)2 + y2 = b2, (u− x)2 + (v − y)2 = c2, u2 + v2 = d2, x2 + y2 = e2, (u− a)2 + v2 = f2, p =
1/2(ay + xu − vy).

The elimination of x, y, u, v gives two polynomial equations. The first one

16p2 − (−a4 + 2a2b2 − b4 − 2a2c2 + 2b2c2 − c4 + 2a2d2 − 2b2d2 + 2c2d2 − d4 + 4e2f2) = 0

is the desired relation. After the simplification we obtain

16p2 = 4e2f2 − (a2 − b2 + c2 − d2)2. (4)

This formula by means of which we can express the area of a quadrangle by the all six
distances between the four vertices was published by Ch.R. Staudt [17] and we will call it
formula of Staudt.
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Figure 3: Area of a quadrangle by Staudt

Remark:

1) Note that the formula (4) holds by the given notation for all possible position of vertices
A,B,C,D of a quadrilateral. Hence also in a case when ABCD is non convex or even
intersects itself. In that case we consider the area of a quadrilateral as the ”signed” area.

2) If we set into the formula (4) e.g. d = 0 then a quadrilateral becomes a triangle and we
get the formula of Heron. Hence (4) is a generalization of the formula of Heron.

The second polynomial we received by elimination process above is related to the so called
Euler’s four points relation, which expresses the dependence of all six distances a, b, c, d, e, f
between four vertices of a quadrangle. It is as follows

e4f2 + e2(a2b2 − a2c2 − b2d2 + c2d2 − a2f2 − b2f2 − c2f2 − d2f2 + f4) − (−a4c2 + a2b2c2 −
a2c4 + a2b2d2 − b4d2 + a2c2d2 + b2c2d2 − b2d4 + a2c2f2 − b2c2f2 − a2d2f2 + b2d2f2) = 0.

Euler’s four points relation follows from the Cayley - Menger determinant for the volume V
of a tetrahedron with edges of lengths a, b, c, d, e, f

288V 2 =

∣∣
∣∣
∣
∣∣
∣∣
∣

0 1 1 1 1
1 0 b2 f2 a2

1 b2 0 c2 e2

1 f2 c2 0 d2

1 a2 e2 d2 0

∣∣
∣∣
∣
∣∣
∣∣
∣

(5)

if we put V = 0. A comparison of the equation V = 0 from (5) with the second equality
which we received in elimination process above shows that the both polynomials are the same
up to the constant factor 2.
Now we show a classical approach to establish formula of Staudt (4). From right triangles
AED and DEC the equalities |DE|2 = d2 − |AE|2, |DE|2 = c2 − |EC|2 follow with

d2 − |AE|2 = c2 − |EC|2. (6)

Analogously from the right triangles AFB and CFB the equality

a2 − |AF |2 = b2 − |FC|2 (7)

follows. Summing up the equalities (6) and (7) gives

a2 − b2 + c2 − d2 = |AF |2 − |FC|2 + |EC|2 − |AE|2. (8)
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Figure 4: The proof of Staudt’s formula

The right hand side in (8) can be written in the form
|AF |2 − |FC|2 + |EC|2 − |AE|2 = |AF |2 − |AE|2 + |EC|2 − |FC|2 = (|AF | + |AE|)(|AF | −
|AE|) + (|EC| + |FC|)(|EC| − |FC|) = ±2e|EF |, i.e.

(a2 − b2 + c2 − d2)2 = 4e2|EF |2. (9)

Further on we see that |EF | = f cos ϕ. A substitution into (9) gives

(a2 − b2 + c2 − d2)2 = 4e2f2 cos2 ϕ. (10)

Now we will use the well-known formula for the area of a quadrilateral by means of the lengths
of diagonals e, f and the angle ϕ

p =
1
2

ef sin ϕ. (11)

Finally the substitution of (11) into (10) with the use of the relation sin2 ϕ = 1− cos2 ϕ gives
the formula (4).

In this example we could see, that a discovery by computer can be in some sense ”easier”
then by classical approach.
The last result we will use to arrive at the well-known formula of Brahmagupta for the area
of an inscribed quadrilateral, which is a generalization of the formula of Heron. The problem
is as follows.

Given a quadrangle ABCD with the sides a = |AB|, b = |BC|, c = |CD|, d = |DA|, which is
inscribed into the circle. Find the area of ABCD.

To solve the problem by computer we shall take advantage of the Staudt’s formula (4) and
use the coordinate free method. In accordance with the left Fig. 5 by Ptolemy’s theorem
ef = ac + bd holds. We will eliminate variables e, f from the ideal (16p2 − 4e2f2 + (a2 − b2 +
c2 − d2)2, ac + bd − ef) and get the only polynomial equation

16p2 = −(a4 + b4 + c4 + d4) + 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2) + 8abcd, (12)

or
16p2 = (−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

or which is the same
p =

√
(s − a)(s − b)(s − c)(s − d), (13)

where s = 1/2(a+b+c+d). This is the well-known formula of Brahmagupta, (Brahmagupta,
598 - about 665).

8



Figure 5: Cyclic quadrilaterals with the sides a, b, c, d – convex and non convex cases

By the figure on the right other position is also possible.

In this case by Ptolemy’s relation ef = ac − bd or ef = bd − ac. Elimination of e, f in the
ideal (16p2 − 4e2f2 + (a2 − b2 + c2 − d2)2, (ac − bd − ef)(ac − bd + ef)) gives the relation

16p′2 = −(a4 + b4 + c4 + d4) + 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2) − 8abcd (14)

or
16p′2 = (a + b + c + d)(a + b − c − d)(a − b + c − d)(−a + b + c − d).

This is the formula for the area of a quadrilateral which intersects itself.

We could also use coordinate method to find the area of an inscribed quadrilateral. The
classical proof of the Brahmagupta’s formula is omitted and can be found for instance in [1].

4 Seminar works

At the end of the seminar students are engaged in a seminar work, which is aimed on a
problem chosen by each student from the recommended offer list on Internet. Seminar works
consist of the following parts:

1) Introduction of the problem
2) Description of the problem by a (dynamic) software
3) Solution of the problem in a classical (synthetic) way
4) Automatic proof (discovery) by computer
5) Conclusions (if necessary)
6) Printing of the seminar work.

As you can see from the above structure of a seminar work, it has a wide use of computer by
solving problems. First the students searched for an appropriate problem from the Internet
offer. Before choosing the problem they mostly consulted it with the teacher if the problem is
appropriate to put it into the prescribed form. The second use of a computer is the choice of
a (dynamic) geometric software to draw the situation and demonstrate it dynamically if pos-
sible. They often used Cabri II. This stage was closely connected with the choice of the text
editor in which the final version of the seminar work would be printed. The most commonly
two text editors were used – TeX and Word. To do a classical proof of a chosen problem,
students used two possibilities - either to find the solution on Internet (at the recommended
address) or to find their own solution.
To solve the problem by computer they usually use software CoCoA or Singular which are
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for free, or Maple or Mathematica or Derive which are installed in the computer rooms.
The most common problems which students encounter by automatic proof or discovery of a
statement are as follows:

1) Algebraization of a geometric situation – unsuitable introduction of the system of coordi-
nates, a complex or unsuitable description of geometric situation by algebraic equations.

2) A bad use of a computational method:
- keeping the correct order of all the stages of automatic proving,
- computation of normal form of an ideal,
- elimination of variables, their ordering, which variables to eliminate,
- finding non-degenerate conditions.

3) Understanding a geometric meaning of an algebraic equation.

4) Finding additional conditions to discover or generalize the statement, formulation of the
generalized statement.

The next example shows some of the problems mentioned above. It is as follows.

Over sides of triangle ABC construct similar isosceles triangles ABC ′, BCA′, CAB′ with
an arbitrary angle by the vertices A′, B′, C ′. Then the straight lines AA′, BB′, CC ′ intersect
at one point S.

Choose the Cartesian coordinate system so that A = [0, 0], B = [a, 0], C = [b, c], A′ =
[k1, k2], B′ = [l1, l2], C ′ = [m1,m2]. Over the sides of the triangle ABC construct arbitrary
isosceles triangles ABC ′, BCA′, CAB′ (all outwardly or all inwardly). The problem of this

Figure 6: Similar triangles over the sides of ABC

task consists in expression of the notion ”outwardly” or ”inwardly” only by means of al-
gebraic equalities. In this theory it is not possible to use algebraic inequalities, because of
working in the field of complex numbers. To describe the point A′ as the vertex of an isosce-
les triangle over the side BC, we can construct two circles with centers B,C with the same
radii |BA′| = CA′|. Their intersection gives two points A′ and A′′ and we cannot distinguish
between outer and inner points A′ and A′′.
Instead we will use the following method, which makes possible to construct the vertex A′
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uniquely and which is due to D. Wang [18].
The vertex A′ is the endpoint of a vector, whose initial point is in the center of BC with the
length v|BC|, where v is a given number, and the same direction as the vector B−C rotated
by the angle 900 in a positive sense, i.e., it holds (k1 − (a + b)/2, k2 − c/2) = v(c, a − b).
Analogously we proceed by B′ and C ′. The line AA′ has the equation k1y− k2x = 0, the line
BB′: (l1 − a)y − (x − a)l2 = 0 and the line CC ′: (b − m1)(y − m2) − (x − m1)(c − m2) = 0.
Suppose that S = [s1, s2] is the common point of the straight lines AA′ and BB′. We are to
prove that the point S is on the line CC ′. We have

Use R::=Q[k[1..2]l[1..2]m[1..2]s[1..2]abcv];
I:=Ideal(2k[1]-a-b-2vc,2k[2]-c-2va+2vb,2l[1]-b+2vc,2l[2]-c-2vb,2m[1]-a,m[2]+va,
k[1]s[2]-k[2]s[1],(l[1]-a)s[2]-(s[1]-a)l[2]);
NF((b-m[1])(s[2]-m[2])-(s[1]-m[1])(c-m[2]),I);
0

which means that the lines AA′, BB′, CC ′ meet at the point S.

The following classical proof of the above statement which is due to O. Bottema [4], [16] is
short end elegant and is worth of reproducing. It is based on the area method.

By the Fig. 6

|AC ′′|/|C ′′B| = Area 	ACC ′/Area 	BCC ′ = |AC||AC ′| sin(A + ϕ)/|BC||BC ′| sin(B + ϕ)

= |AC| sin(A + ϕ)/|BC| sin(B + ϕ)

and similarly
|BA′′|/|A′′C| = |AB| sin(B + ϕ)/|AC| sin(C + ϕ)

and
|CB′′|/|B′′A| = |BC| sin(C + ϕ)/|AB| sin(A + ϕ).

We will find that |AC|
|AC ′|

|BA′′|
|A′′C|

|CB′′|
|B′′A| = 1

and the result now follows from the converse of Ceva’s theorem.

Also this classical proof needs the key idea.

Find the locus of points S by changing the angle ϕ of similar triangles.

With the same notation we will eliminate variables k1, k2, l1, l2,m1,m2, v in the ideal I. The
elimination returns

Use R::=Q[k[1..2]l[1..2]m[1..2]vs[1..2]vabc];
I:=Ideal(2k[1]-a-b-2vc,2k[2]-c-2va+2vb,2l[1]-b+2vc,2l[2]-c-2vb,2m[1]-a,m[2]+va,
k[1]s[2]-k[2]s[1],(l[1]-a)s[2]-(s[1]-a)l[2]);
Elim(k[1]..v,I);
Ideal(-s[1]s[2]a^2+s[1]s[2]ab+1/2s[2]a^2b-s[1]s[2]b^2+1/2s[2]ab^2-1/2s[1]^2ac+
1/2s[2]^2ac+1/2s[1]a^2c+s[1]^2bc-s[2]^2bc-s[1]abc+s[1]s[2]c^2-1/2s[2]ac^2);
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Figure 7: Kiepert’s hyperbola

We see that the points S = [x, y] lie (by the standard notation [x, y] instead of [s1, s2]) on a
conic

x2c(a− 2b) + 2xy(a2 − ab + b2 − c2) + y2c(2b− a) + xac(2b− a) + ya(c2 − ab− b2) = 0, (15)

which is called Kiepert’s hyperbola. Kiepert’s hyperbola (15) has many interesting properties,
for instance it is a rectangular hyperbola, which goes through the vertices of the triangle
ABC. It contains also further ”remarkable” points of the triangle ABC as the centroid, the
orthocenter, outer and inner Fermat’s point etc. The Kiepert’s hyperbola is closely tied with
the Wallace line and Feuerbach’s circle [12].
Now we will give the example of non elementary problem. It is as follows.

Four straight lines a, b, c, d are given in a plane. Construct a square KLMN with each vertex
on one straight line a, b, c, d.

Choose the coordinate system so that K = [k1, k2], L = [l1, l2], M = [m1,m2], N = [n1, n2]
and the lines a, b, c, d have equations a : a1x + a2y + a3 = 0, b : b1x + b2y + b3 = 0,
c : c1x + c2y + c3 = 0, d : d1x + d2y + d3 = 0. Suppose that K ∈ a and L ∈ b. To ensure that
KLMN is a square with the vertices M,N for instance on the lines c, d respectively, we will
rotate the vector L − K by 900 in the positive sense to obtain the vector N − K. Then we
rotate the vector K − N by 900 in the same sense to obtain the vector M − N an so on, see
Fig. 8 We have the following relations:

K ∈ a ⇔ a1k1 + a2k2 + a3 = 0,
L ∈ b ⇔ b1l1 + b2l2 + b3 = 0,
M ∈ c ⇔ c1m1 + c2m2 + c3 = 0,
N ∈ d ⇔ d1n1 + d2n2 + d3 = 0,
rot(K − L) = N − K ⇔ −(l2 − k2) = n1 − k1, l1 − k1 = n2 − k2,
rot(K − N) = M − N ⇔ −(k2 − n2) = m1 − n1, k1 − n1 = m2 − n2,
rot(N − M) = L − M ⇔ −(n2 − m2) = l1 − m1, n1 − m1 = l2 − m2,
rot(M − L) = K − L ⇔ −(m2 − l2) = k1 − l1, m1 − l1 = k2 − l2.

We have 12 equations and we are to solve this system with respect to 8 unknowns k1, k2, l1, l2,
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Figure 8: Square KLMN with vertices on four straight lines a, b, c, d

m1, m2, n1, n2. To easy the computation we put a1 = a3 = 0, a2 = b1 = 1, b3 = c3 = d3 = −1
without any loss of generality. We enter

Use R::=Q[k[1..2]l[1..2]m[1..2]n[1..2]a[1..3]b[1..3]c[1..3]d[1..3]];
I:=Ideal(a[1]k[1]+a[2]k[2]+a[3],b[1]l[1]+b[2]l[2]+b[3],c[1]m[1]+c[2]m[2]+c[3],
d[1]n[1]+d[2]n[2]+d[3],-(l[2]-k[2])-(n[1]-k[1]),l[1]-k[1]-(n[2]-k[2]),-(k[2]-
n[2])-(m[1]-n[1]),k[1]-n[1]-(m[2]-n[2]),-(n[2]-m[2])-(l[1]-m[1]),n[1]-m[1]-
(l[2]-m[2]),-(m[2]-l[2])-(k[1]-l[1]),m[1]-l[1]-(k[2]-l[2]),a[2]-1,a[1],a[3],
b[3]+1,c[3]+1,d[3]+1,b[1]-1);
Elim(k[2]..n[2],I);

and obtain the solution for k1

k1 =
b2c1 + b2c2 + c1d1 + c2d1 − b2d2 − c1d2 + c2d2 + c1 − c2 − d1

b2c1d1 + b2c2d1 − b2c1d2 + c1d1 − c1d2 + c2d2
.

Similarly we find other unknowns. See the square KLMN in Fig. 8, which was done in Cabri
II and is interactive. From the construction we can see that there exist at most four squares
with given properties.
We can also proceed in the following way, see [9].
Denote the coordinates of KLMN and the equations of straight lines a, b, c, d as above and
consider the square with vertices A = [1, 0], B = [0, 1], C = [−1, 0], D = [0,−1]. We are
looking for such a similarity ϕ

ϕ : x′ = px − qy + r, y′ = qx + py + s,

where p, q, r, s are unknown coefficients, which maps the square ABCD into the square
KLMN. We have

ϕ([1, 0]) = [p + r, q + s],
ϕ([0, 1]) = [−q + r, p + s],
ϕ([−1, 0]) = [−p + r,−q + s],
ϕ([0,−1]) = [q + r,−p + s],

from which we get the system of equations

h1 : a1(p + r) + a2(q + s) + a3 = 0,
h2 : b1(−q + r) + b2(p + s) + b3 = 0,
h3 : c1(−p + r) + c2(−q + s) + c3 = 0,
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h4 : d1(q + r) + d2(−p + s) + d3 = 0.

We are to solve the system of equations h1 = 0, h2 = 0, h3 = 0, h4 = 0 with respect to the
unknowns p, q, r, s. We get

Use R::=Q[a[1..3]b[1..3]c[1..3]d[1..3]pqrs];
I:=Ideal(a[1](p+r)+a[2](q+s)+a[3],b[1](-q+r)+b[2](p+s)+b[3],c[1](-p+r)+c[2]
(-q+s)+c[3],d[1](q+r)+d[2](-p+s)+d[3],a[2]-1,a[1],a[3],b[3]+1,c[3]+1,d[3]+1,
b[1]-1,p+r-x,p+s-y);
Elim(q..s,I);

with the same result as above.

5 Examples of seminar works

Problems which have been solved in seminar works were mostly taken from the Internet
address: http://www.cut-the-knot.org/geometry.shtml.
Some of the chosen topics are as follows: Thébault problem, Sum of distances to the sides
of an equilateral triangle (Vivianni), Butterfly theorem, Theorem of Menelaus, Ptolemy’s
theorem, Stewart’s theorem, Napoleon’s theorem and topics related to Napoleon’s theorem,
Eyeball problem etc.

On the next pages you can see the example of a seminar work on Zaslavsky problem, which
is due to the student of the 4th year university study.
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