
Random distributions.mth: Random samples
from distributions with Derive

Galán Garćıa, José Luis jl galan@uma.es
Aguilera Venegas, Gabriel gabri@ctima.uma.es

Padilla Domı́nguez, Yolanda ypadilla@ctima.uma.es
Rodŕıguez Cielos, Pedro prodriguez@uma.es

Department of Applied Mathematic
University of Málaga (Spain)

Abstract

This paper establishes the theoretical aspects which have been considered in order to elabo-
rate the Random distiributions package for Derive 6 as well as the description of the different
algorithm developed in the package. In section 1 the theory on random number generation is
presented (from [Rubinstein, 1981]). After explaining Derive’s random function (section 1.1)
the more efficient algorithms ran2 and mzran13 are developed (section 1.2 and 1.3 respectively).
Section 2 presents three different general methods for generating continuous distributions to-
gether with one for generating discrete distributions. Section 3 is dedicated to describe different
algorithms for generating random values from continuous distributions (Uniform, Exponential,
Normal, Lognormal, Weibul, Gamma, Beta, Chi-square, Student’s t, F, Z, Pareto, Logistic and
Cauchy distributions). Section 4 presents different algorithms for generating discrete distri-
butions (Uniform discrete, Bernouille, Binomial, Poisson, Geometric, Negative Binomial and
Hypergeometric). Finally, in section 5 some algorithms for generating different distributions
using other distributions as approximations are developed.

1 Random Number Generation

The most commonly used methods for generating pseudorandom numbers are congruential genera-
tors. A congruential method is one that produces a nonrandom sequence of numbers according to
some recursive formula based on calculating the residues modulo of some integer m of a linear
transformation. It is readily seen from this definition that each term of the sequence is available
in advance, before the sequence is actually generated. Although these processes are completely de-
terministic, it can be shown that the numbers generated by the sequence appear to be uniformly
distributed and statistically independent.

Congruential methods are based on a fundamental congruence relationship, which may be ex-
pressed as:

Xi+1 = a Xi + c (mod m) i = 0, 1, 2, . . . , n (1)

where the multiplier a, the increment c and the modulus m are nonnegative integers.

Given an initial starting value X0 (called the seed), (1) yields a congruence relationship (modulo
m) for any value i of the sequence {Xi}. Generators that produce random numbers according

1

to (1) are called mixed congruential generators. The random numbers on the unit interval (0, 1)
can be obtained by:

Ui =
Xi

m
(2)

Clearly, such a sequence will repeat itself in at most m steps, and will therefore be periodic.

As Xi < m for all i, the period of the generator cannot exceed m, that is, the sequence Xi

contains at most m different numbers. Because of the deterministic character of the sequence, the
entire sequence recurs as soon as any number is repeated. The sequence is said to get into a loop,
that is, there is a cycle of numbers that is repeated endlessly. Modulus m should be chosen as large
as possible and appropriated values of a and c in order to make the period p maximum (that is,
p = m) must be found. When this happens the random number generator has a full period. It can
be shown that the generator defined in (1) has a full period m, if and only if:

1. c is relative prime to m, that is, c and m have no common divisor.

2. a ≡ 1 (mod g) for every prime factor g of m.

3. a ≡ 1 (mod 4) if m is a multiple of 4.

Since most computers utilize either a binary or a decimal digit system, the best selection for m
is m = 2β or m = 10β, respectively where β is the word–length of the particular binary or
decimal computer.

For binary computers, in order to develop a full period generator when m = 2β, the parameter
c must be odd and a = 4k + 1 for some k ∈ N.

The second widely used generator is the multiplicative generator:

Xi+1 = a Xi (mod m) i = 0, 1, 2, . . . , n (3)

which is a particular case of the mixed generator (1) with c = 0.

Another common type of generator in which Xi+1 depends on more than one of the preceding
values1. For example:

Xi+1 = a1 Xi−j1 + a2 Xi−j2 + · · ·+ ak Xi−jk
+ c (mod m) or

Xi+1 = a Xi−j1 ·Xi−j2 · · ·Xi−jk
+ c (mod m)

Nowadays “the best” generators use combinations of the generators described along this section
in order to increase the randomness and the period of the generated sequences.

1.1 Derive’s random function

Derive’s random function uses a mixed generator given by:

Xi+1 = 2.654.435.721 Xi + 1
(
mod 232

)
which satisfies the conditions to be a full period generator, that is, the period of Derive’s random
function is 232 = 4.294.967.296.

Derive’s random function RANDOM(n) can be used with any n ∈ Z with the following meanings:

1These generators are often called Fibonacci generators because one example is given by the Fibonacci serie:

Xi+1 = Xi + Xi−1 (mod m)

2

• If n > 1, RANDOM(n) simplifies to a random integer in the interval [0, n).

• RANDOM(1) simplifies to a random number in the interval [0, 1).

• If n < 0, RANDOM(n) simplifies to −n and initializes the random number state variable to
−n.

• RANDOM(0) simplifies to the time in centiseconds since the current calendar year began and
initializes the random number state variable to that time.

Although this is a “good” generator, the following two subsections describe two different algo-
rithms, implemented in the package Random distributions, which periods are quite much longer
and also improve the randomness.

1.2 ran2 algorithm

The ran2 algorithm was proposed by L’Ecuyer and is described in [Press and Teukolsky, 1992] and
[Press et al., 1999].

This algorithm merges the following two multiplicative generators:

Xi+1 = 40014 Xi

(
mod 231 − 85

)
Yi+1 = 40692 Yi

(
mod 231 − 249

)
This algorithm has been used for a long time as one of the best generators and its period is about

2.3 · 1018 = 2.300.000.000.000.000.000 which is more than 535.510.480 times longer than Derive’s
random generator period.

The implementation on Derive has been carried out “translating” the “C” code developed in
[Press et al., 1999] and it uses the following two functions:

• ran2(n) which is the main algorithm. This function returns a vector of size n of random
numbers in the interval [0, 1).

• ran2 initialize() This auxiliar function is used to set the variables and constants needed
for the algorithm.

1.3 mzran13 algorithm

The mzran13 algorithm was proposed by G. Marsaglia and A. Zaman as an alternative to ran2. This
algorithm is described in [Marsaglia and Zaman, 1994].

This algorithm merges the two generators: a mixed one with a Fibonacci’s like one.

Xi+1 = 69069 Xi + 1.013.904.243
(
mod 232

)
Yi+1 = Yi−1 − Yi−2 − “c”

(
mod 232 − 18

)
where the second one is a subtract-with-borrow generator (because of the term “c”).

3

This algorithm has been found to be at least as good as ran2 but simpler, much faster and with
periods “millions and millions” of times longer. Specifically, its period is over

294 = 19.807.040.628.566.084.398.385.987.584,

that is, 8.611.756.795 times longer than ran2’s period and 4.611.686.018.427.387.904 times longer
than Derive’s period.

The implementation on Derive has been carried out “translating” the “C” code developed in
[Marsaglia and Zaman, 1994] and it uses the following function:

• mzran13(n). This function returns a vector of size n of random numbers in the interval
[0, 1). Previously, when the package Random distribution is loaded, the needed constants
and variables are initialized.

This algorithm is the base for all the random distribution generations developed in this package.

2 Different methods for random variate generation

This section presents some general methods for generating random variables from different contin-
uous and discrete distributions. In the following subsections three general methods for continuous
distributions and one for discrete distributions are described.

2.1 Inverse transform method

Let X be a random variable with cumulative probability distribution function FX (x). Since FX (x)
is a nondecreasing function, the inverse function F−1

X (y) may be defined for any value of y between
0 and 1 as: F−1

X (y) is the smallest x satisfying FX (x) ≥ y, that is,

F−1
X (y) = inf {FX (x) ≥ y} , 0 ≤ y ≤ 1

If U is uniformly distributed over the interval (0, 1), then X = F−1
X (U). So, to get a value x

of the random variable X , a value u from a random uniform variable U(0, 1) can be obtained
and compute x = F−1

X (y). Thus, the general algorithm for the inverse transform method is:

1. Generate a value u from U(0, 1).

2. Obtain x = F−1
X (u) as the random number from the variable X .

The only condition needed for this method is that F−1
X exists in an analytical form.

The following Derive’s program has been developed in the package Random distributions to
obtain a formula to generate X using the inverse transform method:

Inverse transform method(f, ini := 0, u) :=

Prog

(

u :∈ Real [0,1],

Solve(u = INT(f, x, ini, x), x, Real)

)

4

2.2 Composition method

This method is employed by Butler and consists of expressing the probability density function fX (x)
of the distribution to be simulated as a probability mixture of properly selected density functions.

Let g(x|y) be a family of one-parameter density functions, where y is the parameter identifying
a unique g(x). If a value of y is drawn from a continuous cumulative function FY(y) and then if
X is sampled from the g(x) for that chosen y, the density function for X will be

fX (x) =

∫
g(x|y) dFY(y)

If y is an integer parameter, then

fX (x) =
∑

i

Pi g(x|y = i)

where ∑
i

Pi = 1 ; Pi > 0 ; Pi = P [Y = i] i = 1, 2, . . .

This method may be applied for generating complex distributions from simpler distributions
that are themselves easily generated by the inverse transform method or by the acceptance-rejection
method described below.

2.3 Acceptance–rejection method

This method is due to von Neumann and consists on sampling a random variate from an appropriate
distribution and subjecting it to a test to determine whether or not it will be acceptable for use.

To carry out this method, the probability density function fX (x) of the variable X must be
expressed as:

fX (x) = C · h(x) · g(x)

where C ≥ 1, h(x) is also a probability density function, and 0 < g(x) ≤ 1. After generating two
random values u and y from U(0, 1) and h(y), respectively, the test to see wether or not the
inequality u ≤ g(y) holds must be done, and:

1. If the inequality holds, then accept y as a variate generated from fX (x).

2. If the inequality is violated, reject the pair u , y and try again.

So, the general algorithm for the acceptance–rejection method is:

1. Generate a value u from U(0, 1)

2. Generate y from the probability density function h(y).

3. If u ≤ g(y), return y as the variate generated from fX (x)

4. Go to step 1.

5

2.4 Inverse transform method for discrete distributions

The inverse transform method is the easier method to use not only for continuous distributions but
also for discrete distribution.

Let X be a random discrete variate which finite or infinite possible values are

x1, x2, . . . , xi,

Let FX (x) be its probability mass function given by

F (xi) = P [X = xi] = pi i = 1, 2, . . .

The inverse transform method can be described as follow:

1. Generate u from U(0, 1).

2. i := 1.

3. p := p1.

4. If u ≤ p deliver xi as the generated value.

5. i := i + 1.

6. p := p + pi

7. Go to step 4.

On the other hand, the values xi can be assumed to be all integers and xi+1 = xi + 1, because
if this is not the case, the correspondence φ(xi) = i can be established and consider a new random
discrete variate Y which values are 1, 2, . . . and FY(i) = P [Y = i] = P [X = xi] = pi, which is
equivalent to X and verify the above condition.

Let X = {ini, ini + 1, ini + 2, . . .} for some ini ∈ Z with probability mass function
FX (x) := P [X = x] = px ; x = ini, ini + 1, ini + 2, . . .

The following Derive’s program has been developed in the package Random distributions to
generate an element of X using the inverse transform method:

random discrete aux(F, ini := 0, aleat, i , p) :=

Prog

(

i := ini,

p := SUBST(F, x, i),

Loop

(

If aleat ≥ p,

RETURN i),

i := i + 1,

p := p + SUBST(F, x, i)

)

)

while the following Derive’s program generate a sample of size n of X .

6

random discrete(n := 1, F, ini := 0, vecaleat) :=

Prog

(

vecaleat := random uniform(n),

VECTOR(random discrete aux(F, ini, vecaleat sub j), j, n)

)

3 Continuous distributions random generation

This section describes generating procedures for different continuous distributions.

All these continuous distributions are presented with their probability density functions and
with a drawing of a bars diagram, obtained by the Derive’s algorithm developed in the package
Random distributions, together with the plot of the corresponding probability density function in
order to see graphically if it is a “good” sample of generated values.

See [Rubinstein, 1981] and [Galán, 1991] for further information on the algorithm described below.

3.1 Uniform distribution

A random variable X has an uniform distribution in
the interval (a, b) (X ; U(a, b)) if its probability
density function is:

fX (x) =


1

b− a
x ∈ (a, b)

0 otherwise U(0, 1)

To generate X , first u must be generated from U(0, 1) and then return a + (b− a) u as

the generated value.

3.2 Exponential distribution

E(1)

A random variable X has an exponential distribution
with parameter λ > 0 (X ; E(λ)) if its probability
density function is:

fX (x) =


1

λ
e−x/λ x ∈ [0,∞)

0 otherwise

To generate X the inverse transform method is used:

U = FX (x) =

∫ x

0

1

λ
e−t/λ dt = 1− e−x/λ =⇒ X = −λ ln (1− U) ≡ −λ ln (U)

Thus, to generate X , u must be generated from U(0, 1) and then return x = −λ ln u as
the generated value.

7

3.3 Normal distribution

A random variable X has a normal distribution with
parameters µ and σ (X ; N (µ, σ)) if its probability
density function is:

fX (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 x ∈ R

N (0, 1)

To generate X , Box and Muller theorem establishes that:

If U1 ; U(0, 1) and U2 ; U(0, 1) then

Z1 =
√
−2 ln(U1) cos(2πU2) and Z2 =

√
−2 ln(U1) sin(2πU2)

are independent standard normal deviates N (0, 1)

On the other hand, if Z ; N (0, 1) then (µ + σ Z) ; N (µ, σ)

Thus, to generate X , u1 and u2 must be generated from U(0, 1) and then return any of

the values µ + σ
√
−2 ln(u1) cos(2π u2) or µ + σ

√
−2 ln(u1) sin(2π u2) as the generated

value.

3.4 Lognormal distribution

LN (0, 1)

If the random variable Z ; N (µ, σ) then X = eZ

has the lognormal distribution with parameters µ and
σ (X ; LN (µ, σ)). Its probability density function
is:

fX (x) =


1

xσ
√

2π
e−

(ln x−µ)2

2σ2 x ∈ [0,∞)

0 Otherwise

To generate X , z must be generated from N (µ, σ) and then return x = ez as the
generated value.

8

3.5 Weibul distribution

A random variable X has a Weibul distribution with
parameters α > 0 and β > 0 (X ; W(α, β)) if its
probability density function is:

fX (x) =


α

βα
xα−1 e−(x

β
)α

x ∈ [0,∞)

0 Otherwise W(5, 10)

To generate X the inverse transform method can be used:

U = FX (x) =

∫ x

0

α

βα
tα−1 e−(t

β
)α

dt = 1− e−(x
β

)α

=⇒(
X
β

)α

= − ln(1− U) ≡ − lnU ; E(1) =⇒

X ≡ β
(
E(1)

)1/α

To generate X , v must be generated from E(1) and then return x = βv1/α as the
generated value.

3.6 Gamma distribution

G(2, 3.5)

A random variable X has a Gamma distribution with
parameters α > 0 and β > 0 (X ; G(α, β)) if its
probability density function is:

fX (x) =


xα−1 e−x/β

βα Γ(α)
x ∈ [0,∞)

0 Otherwise

The inverse transform method cannot be applied since F−1
X (x) does not exist in an explicit form.

In this case, different algorithms have been developed in order to generate samples of the Gamma
distribution. Finally, the main algorithm chooses which is the appropriated one depending on the
values of parameters α and β.

3.6.1 random gamma1

This algorithm is valid for values of α > 1. The following two properties of gamma distribution are
the base to develop this algorithm:

1. G(1, β) = E(β).

2. If X1 ; G(α1, β) and X2 ; G(α2, β) then X = X1 + X2 ; G(α1 + α2, β), that is, gamma
distribution is reproductive with respect its first parameter.

9

Let α > 1 , m = floor(α) and δ = α −m where floor(α) is the integer part of α. In order
to generate X ; G(α, β) a mixture of G(m, β) and G(m + 1, β) with probabilities 1 − δ and
δ respectively can be used. On the other hand, in order to generate them, m or m + 1 variables
from G(1, β) = E(β) must be generated as shown in 3.2. Thus, given U1,U2, . . . ,Um+1 ; U(0, 1):

X = −β ln (U1)− β ln (U2)− · · · − β ln (Um) = −β ln

(
m∏

i=1

Ui

)
; G(m,β) and

Y = −β ln (U1)− β ln (U2)− · · · − β ln (Um+1) = −β ln

(
m+1∏
i=1

Ui

)
; G(m + 1, β)

The algorithm is:

1. Get u, u1, u2, . . . , um, um+1 from U(0, 1).

2. Let x =
m∏

i=1

ui.

3. If δ ≤ u then let x = x · um+1.

4. Return −β ln(x) as the generate value.

3.6.2 random gamma2

If 0 < α < 1 then X = Y · V where X ; G(α, β) ; Y ; Be(α, 1−α) and V ; E(β).
(Beta distribution Be is described in section 3.7). Thus, random gamma2 algorithm to generate
X ; G(α, β) (0 < α < 1) can be described by:

1. Generate y from Be(α, 1− α) (using algorithm random beta4 described in 3.7.2).

2. Generate v from E(β).

3. Return y · v as generated value.

3.6.3 random gamma5

This is an acceptance–rejection method due to Cheng and describes gamma generation G(α, 1) for
α > 1. Let remember that the acceptance–rejection method is based in the following decomposition:

fX (x) = C · h(x) · g(x)

Cheng’s procedure uses:

h(x) =


λ µ xλ−1

(µ + xλ)2 x ≥ 0

0 Otherwise

C =
4αα

Γ(α) eα λ

g(x) = xα−λ
(
µ + xλ

)2 eα−x

4 αα+λ
where

λ =
√

2α− 1 ; µ = αλ

Setting a =
1

λ
, b = α− ln 4 and c = α + a Cheng’s algorithm can be written as:

10

1. Get u1 and u2 from U(0, 1).

2. Let v = a ln

(
u1

1− u1

)
.

3. Let x = α ev.

4. If b + c v − x ≥ ln(u2
1u2) return x as the generated value for G(α, 1).

5. Go to step 1.

3.6.4 random gamma9

This algorithm uses the approximation to Gamma distribution by Normal distribution when α and
β are not “small”.

Specifically, if Z ; N

(
ln

(
α

β

)
− 1

2α
,

√
1

α

)
then G(α, β) ≈ eZ . Thus, the algorithm

is:

1. Generate z from N

(
ln

(
α

β

)
− 1

2α
,

√
1

α

)
.

2. Deliver x = ez as the generated value for G(α, β).

3.6.5 random gamma

Finally, the following algorithm runs the above algorithms depending on the parameters α and β
in order to generate a sample of size n from G(α, β):

random gamma(n := 1, α := 1, β := 1) :=

Prog

(

If (α = 1, return random exponential(n, β)),
If (α < 1, return random gamma2(n, α, β)),
If (β = 1, return random gamma5(n, α, β)),
If (α > 20 and β > 20, return random gamma9(n, α, β)),
return random gamma1(n, α, β)

)

3.7 Beta distribution

X has a Beta distribution with parameters α > 0
and β > 0 (X ; Be(α, β)) if its probability density
function is:

fX (x) =


Γ(α + β)

Γ(α) · Γ(β)
xα−1(1− x)β−1 x ∈ [0, 1]

0 Otherwise Be(2, 5)

The inverse transform method cannot be applied since F−1
X (x) does not exist in an explicit form.

11

In this case, as in the case of Gamma distribution, different algorithms have been developed in
order to generate samples of the Beta distribution. Finally, the main algorithm chooses which is the
appropriated one depending on the values of parameters α and β.

3.7.1 random beta1

This algorithm is based in the following result:

If Y1 ; G(α, 1) and Y2 ; G(β, 1) then X =
Y1

Y1 + Y2

; Be(α, β).

Its implementation is therefore trivial:

1. Generate y1 and y2 from G(α, 1) and G(β, 1) respectively.

2. Deliver x =
y1

y1 + y2

as the generated value for Be(α, β).

3.7.2 random beta4

This algorithm has been developed for using in algorithm random gamma2. It is due to Jöhnk and is
based on the following result:

Let U1 ; U(0, 1) and U2 ; U(0, 1) and let Y1 = U1/α
1 and Y2 = U1/β

2 . If Y1 + Y2 < 1

then X =
Y1

Y1 + Y2

; Be(α, β).

The algorithm is:

1. Generate u1 and u2 from U(0, 1).

2. Set y1 = u
1/α
1 and y2 = u

1/β
2 .

3. If y1 + y2 < 1 deliver x =
y1

y1 + y2

as the generated value for Be(α, β).

4. Go to step 1.

3.7.3 random beta7

This algorithm uses the approximation to Beta distribution by Normal distribution when α and β
are not “large enough”.

Specifically, if X ; Be(α, β) then ln

(
X

1−X

)
≈ N (µ, σ) where µ = ln

(
α

β

)
+

α− β

2αβ
and

σ =

√
α + β

αβ
.

Thus,

ln

(
x

1− x

)
= z =⇒ x =

ez

(1 + ez)

and hence, the algorithm is:

1. Generate z from N

(
ln

(
α

β

)
+

α− β

2αβ
,

√
α + β

αβ

)
.

2. Deliver x =
ez

(1 + ez)
as the generated value for Be(α, β).

12

3.7.4 random beta

Finally, the following algorithm runs the above algorithms depending on the parameters α and β
in order to generate Be(α, β):

random beta(n := 1, α := 1, β := 1) :=

If (α < 4 or β < 4,

random beta1(n, α, β),
random beta7(n, α, β)
)

3.8 Chi–Square distribution

χ2(35)

Let Zi ; N (0, 1) i = 1, . . . , k k standard normal in-

dependent distributions. In this case, X =
k∑

i=1

Z2
i has

the chi–square distribution with k degrees of freedom
(X ; χ2(k)).

Its probability density function is given by:

fX (x) =


xk/2−1 e−x/2

2k/2 Γ
(

k
2

) x ∈ [0,∞)

0 Otherwise

Although the algorithm to generate X ; χ2(k) would be trivial by definition, it would need k
values from N (0, 1) which require many operations if k is “large”. Thus, in the next two sections,
two different algorithms which improve (in number of operations) the “definition algorithm” are
described.

3.8.1 random chi square2

This algorithm is valid for “large” values of k (say k > 30) and it uses the following approximation
from the standard normal distribution:

If X ; χ2(k) then Z =
√

2X −
√

2k − 1 is such that Z ; N (0, 1)

Solving for X , X =

(
Z +

√
2k − 1

)2
2

. Thus, to generate X ; χ2(k) z must be generated

from N (0, 1) and then return x =

(
z +

√
2k − 1

)2
2

as the generated value.

3.8.2 random chi square3

This algorithm is based in the fact that χ2(k) is a particular case of a gamma density. Specifically,

χ2(k) ≡ G
(

k

2
, 2

)
. Thus, to generate X ; χ2(k), g must be generated from G

(
k

2
, 2

)
and then

return x = g as the generated value.

13

3.8.3 random chi square

Finally, the following algorithm runs the above algorithms depending on the parameter k in order
to generate χ2(k):

random chi square(n := 1, k := 1) :=

If (k > 30,

random chi square2(n, k),

random chi square3(n, k)

)

3.9 Student’s t distribution

Let Z ; N (0, 1) and Y ; χ2(k) independents.

Then X =
Z√
Y/k

has a Student’s t distribution with

k degrees of freedom (X ; t(k)).

Its probability density function is:

fX (x) =
Γ
(

k+1
2

)
√

kπ Γ
(

k
2

) (1 +
x2

k

)−(k+1)/2

x ∈ R t(35)

To generate X ; t(k), z must be generated from N (0, 1) and y from χ2(k) and then

return x =
z√
y/k

as the generated value.

3.10 F distribution

F(32, 45)

Let Y1 ; χ2(k1) and Y2 ; χ2(k2) independents.

Then X =
Y1/k1

Y2/k2

has a F distribution with k1 and

k2 degrees of freedom (X ; F(k1, k2)).

Its probability density function is given by:

fX (x) =


Γ
(

k1+k2

2

) (
k1

k2

)k1/2

xk1/2−1

Γ
(

k1

2

)
Γ
(

k2

2

) (
1 + k1 x

k2

)(k1+k2)/2
x ∈ (0,∞)

0 Otherwise

To generate X ; F (k1, k2), y1 and y2 must be generated from χ2(k1) and χ2(k2)

respectively and then return x =
y1/k1

y2/k2

as the generated value.

14

3.11 Z distribution

Let Y ; F(k1, k2). Then, the variable X =
ln (Y)

2
has a Z distribution with k1 and k2 degrees of
freedom (X ; Z(k1, k2)).

Its probability density function is given by:

fX (x) =
2 Γ

(
k1+k2

2

) (
k1

k2

)k1/2

ek1x

Γ
(

k1

2

)
Γ
(

k2

2

) (
1 + k1 e2x

k2

)(k1+k2)/2
x ∈ R Z(32, 45)

To generate X ; Z(k1, k2), y must be generated from F(k1, k2) and then return

x =
ln(y)

2
as the generated value.

3.12 Pareto distribution

Pa(8, 1)

A random variable X has a Pareto distribution with
parameters α > 0 and x0 > 0 (X ; Pa(α, x0)) if
its probability density function is:

fX (x) =


α

x0

(x0

x

)α+1

x ∈ [x0,∞)

0 otherwise

To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

x0

α

x0

(x0

t

)α+1

dt = 1−
(x0

x

)α

=⇒ X =
x0

(1− U)1−α ≡
x0

U1−α

Thus, to generate X ; Pa(α, x0), u must be generated from U(0, 1) and then deliver
x0

u1/α
as the generated value.

3.13 Logistic distribution

A random variable X has a Logistic distribution with
parameter α > 0 (X ; L(α)) if its probability
density function is:

fX (x) =
α e−x

(1 + e−x)α+1 x ∈ R

L(10)

15

To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

− inf

α e−t

(1 + e−t)α+1 dt =
1

(1 + e−x)α =⇒ X = − ln

(
1− U1/α

U1/α

)
Thus, in order to generate X ; L(α), u must be generated from U(0, 1) and then deliver

− ln

(
1− u1/α

u1/α

)
as the generated value.

3.14 Cauchy distribution

C(0, 1)

A random variable X has a Cauchy distribution with
parameters α ≥ 0 and β > 0 (X ; C(α, β)) if its
probability density function is:

fX (x) =
β

π
[
β2 + (x− α)2] x ∈ R

To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

−∞

β

π
[
β2 + (t− α)2] dt =

1

2
+

atan
(

x−α
β

)
π

=⇒ X = α + β tan

[
π

(
U − 1

2

)]

Thus, in order to generate X ; C(α, β), u must be generated from U(0, 1) and then deliver

α + β tan

[
π

(
u− 1

2

)]
as the generated value.

4 Discrete distributions random generation

In this section different procedures are presented in order to generate discrete distributions. The
inverse transform method for discrete distributions described in 2.4 is used in order to generate a
sample of the distribution. The only thing to do is to use the random discrete function developed
in the same section with the corresponding parameters.

4.1 Uniform discrete distribution

X = {a, a+1, . . . , b} has an uniform discrete distribution with parameters a and b (X ; UD(a, b))
if its distribution mass function F is:

F (x) = P [X = x] =
1

b− a + 1
; x = a, a + 1, . . . , b

Thus, in order to generate a sample of size n from an UD(a, b), the following Derive code can
be used:

random uniform discrete(n := 1, a := 0, b := 1) :=

random discrete(n,1/(b-a+1),a)

16

4.2 Bernouille distribution

X = {0, 1} has a Bernouille distribution with parameter p (X ; Ber(p)) if its distribution mass
function F is:

F (x) = P [X = x] = px(1− p)1−x ; x = 0, 1

or, equivalently, F (0) = 1− p and F (1) = p.

Thus, in order to generate a sample of size n from a Ber(p), the following Derive code can
be used:

random bernouille(n := 1, p := 1/2) := random discrete(n,px(1− p)1−x,0)

4.3 Binomial distribution

X = {0, 1, . . . , n} has a binomial distribution with parameters n and p (X ; Bi(n, p)) if its
distribution mass function F is:

F (x) = P [X = x] =

(
n
x

)
px(1− p)n−x ; x = 0, 1, . . . , n

Thus, in order to generate a sample of size m from a Bi(n, p), the following Derive code can
be used:

random binomial(m := 1, n := 100, p := 1/2) :=

random discrete(m, ncom(n,x) px(1− p)n−x,0)

4.4 Poisson distribution

X = {0, 1, 2, . . .} has a poisson distribution of parameter λ (X ; P(λ)) if its distribution mass
function F is:

F (x) = P [X = x] =
e−λ λx

x!
; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a P(λ), the following Derive code can be
used:

random poisson(n := 1, λ := 1) := random discrete(n,
e−λ λx

x!
,0)

4.5 Geometric distribution

X = {0, 1, 2, . . .} has a Geometric distribution with parameter p (X ; Ge(p)) if its distribution
mass function F is:

F (x) = P [X = x] = p (1− p)x ; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a Ge(p), the following Derive code can be
used:

random geometric(n := 1, p := 1/2) := random discrete(n,p (1− p)x,0)

17

4.6 Negative Binomial distribution

X = {0, 1, 2, . . .} has a negative binomial distribution with parameters r and p (X ; NB(r, p))
if its distribution mass function F is:

F (x) = P [X = x] =

(
r + x− 1

x

)
pr(1− p)x ; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a NB(r, p), the following Derive code can
be used:

random negative binomial(n := 1, r := 10, p := 1/2) :=

random discrete(n, ncom(r+x-1,x) pr(1− p)x,0)

4.7 Hypergeometric distribution

X = {max(0, n1 + m − n), . . . , min(n1, m)} has an hypergeometric distribution with parameters
n , m and n1 (X ; H(n, m, n1)) if its distribution mass function F is:

F (x) = P [X = x] =

(
n1

x

)(
n− n1

m− x

)
(

n
m

) ; x = max(0, n1 + m− n), . . . , min(n1, m)

Thus, in order to generate a sample of size l from a NB(r, p), the following Derive code can
be used:

random hypergeometric(l:=1, n := 100, m := 50, n1 := 50) :=

random discrete(l,
ncom(n1, x)ncom(n− n1, m− x)

ncom(n, m)
,max(0, n1 + m - n))

5 Approximative algorithms

In this section several algorithms used to generate different distributions using some kind of approx-
imations are presented.

The main reason in order to use such algorithm is that they produce “goods” samples and
they are quite more faster than other “exact” algorithm. In fact, some of the algorithms described
above are approximative algorithm (random gamma9, random beta7 and random chi square2 are
approximative algorithms for G(α, β), Be(α, β) and χ2(k) distributions which use N (µ, σ)
distribution as approximation).

In the followings subsections some other approximative algorithms which have been implemented
in Random distribution package are developed.

5.1 Approximation to Binomial distribution by Poisson distribution

Let X ; Bi(n, p). If p is “small” then

Bi(n, p) ≈ P(n p)

Thus, the algorithm to generate a sample of size m from the binomial distribution approximated
by a poisson distribution is:

random binomial approx poisson(m:=1, n := 100, p:= 0.01) :=

random poisson(m,np)

18

5.2 Approximation to Binomial distribution by Normal distribution

Let X ; Bi(n, p). If n is “large” and p is not close to 0 or 1, then

Bi(n, p) ≈ N
(
n p,

√
n p (1− p)

)
It can be shown that “good” approximations are reached when n p > 10 with 0 << p < 0.5 or

n (1− p) > 10 with 0.5 < p << 1 (<< indicates less than but not close to).

On the other hand, as Bi(n, p) has only nonnegative integer values, the nearest nonnegative

integer to the value returned by N
(
n p,

√
n p (1− p)

)
must be chosen as the generated value for

X . It is easy to understand that the nearest nonnegative integer to a value z can be found by the
operation:

max

(
0, floor

(
z +

1

2

))
where floor(x) is the integer part of x.

Thus, the algorithm to generate a sample of size m from the binomial distribution approximated
by a normal distribution is:

random binomial approx normal(m:=1, n := 100, p:= 1/4) :=

vector(max(0,floor(k+1/2)),k,random normal(m,np,sqrt(np(1-p))))

5.3 Approximation to Poisson distribution by Normal distribution

Let X ; P(λ). If λ > 10 then P(λ) ≈ N
(
λ,
√

λ
)

On the other hand, as P(λ) has only nonnegative integer values, the nearest nonnegative integer

to the value returned by N
(
λ,
√

λ
)

must be chosen as the generated value for X . It is easy to

understand that the nearest nonnegative integer to a value z can be found by the operation:

max

(
0, floor

(
z +

1

2

))
where floor(x) is the integer part of x.

Thus, the algorithm to generate a sample of size n from the poisson distribution approximated
by a normal distribution is:

random poisson approx normal(n := 1, λ:= 15) :=

vector(max(0,floor(k+1/2)),k,random normal(n,λ,sqrt(λ)))

5.4 Approximation to Geometric distribution by Exponential distribu-
tion

If X ; Ge(p) then X ≈ E
(

ln

(
1

1− p

))
On the other hand, as Ge(p) has only nonnegative integer values, the nearest nonnegative

integer to the value returned by E
(

ln

(
1

1− p

))
must be chosen as the generated value for X .

The nearest nonnegative integer to a value z > 0 (exponential distribution has only positive real
numbers) can be found by the operation:

floor

(
z +

1

2

)
19

where floor(x) is the integer part of x.

Thus, the algorithm to generate a sample of size n for the Geometric distribution approximated
by a exponential distribution is:

random geometric approx exponential(n := 1, p:= 1/2) :=

vector(floor(k+1/2),k,random exponential(n,ln(1/(1-p))))

References

[Galán, 1991] Galán, J. L. (1991). Simulación de Variables Aleatorias. Proyecto Fin de Carrera,
Universidad de Málaga.

[Marsaglia and Zaman, 1994] Marsaglia, G. and Zaman, A. (1994). Some portable very-long-period
random number generators. Computers in Physics, 8(1):117–121.

[Press and Teukolsky, 1992] Press, W. H. and Teukolsky, S. A. (1992). Portable Random Number
Generators. Computers in Physics, 6(5):522–524.

[Press et al., 1999] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1999).
Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, United
States.

[Rubinstein, 1981] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. John Wiley
& Sons, New York.

20

	Random Number Generation
	Derive's random function
	ran2 algorithm
	mzran13 algorithm

	Different methods for random variate generation
	Inverse transform method
	Composition method
	Acceptance--rejection method
	Inverse transform method for discrete distributions

	Continuous distributions random generation
	Uniform distribution
	Exponential distribution
	Normal distribution
	Lognormal distribution
	Weibul distribution
	Gamma distribution
	random_gamma1
	random_gamma2
	random_gamma5
	random_gamma9
	random_gamma

	Beta distribution
	random_beta1
	random_beta4
	random_beta7
	random_beta

	Chi--Square distribution
	random_chi_square2
	random_chi_square3
	random_chi_square

	Student's t distribution
	F distribution
	Z distribution
	Pareto distribution
	Logistic distribution
	Cauchy distribution

	Discrete distributions random generation
	Uniform discrete distribution
	Bernouille distribution
	Binomial distribution
	Poisson distribution
	Geometric distribution
	Negative Binomial distribution
	Hypergeometric distribution

	Approximative algorithms
	Approximation to Binomial distribution by Poisson distribution
	Approximation to Binomial distribution by Normal distribution
	Approximation to Poisson distribution by Normal distribution
	Approximation to Geometric distribution by Exponential distribution

	toabstr:

