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Abstract: 

This paper intends to make a case for the use of a CAS (using a platform of either a PC with a 
CAS package such as Derive® or a hand-held CAS such as the TI-89® or Voyage 200®) in 
planning and teaching a mathematics course for students in the biological sciences.  The course is 
to be constructed using the guidelines spelled out in the monograph BIO 2010 – Transforming 
Undergraduate Education for Future Research Biologists, [ ] published by the National Research 
Council of the National Academies in the United States.  While this report does not formally 
suggest the use of a CAS, it does endorse the use of the technology that is available for the 
learning of tools and techniques that will aid students in the biological sciences.  It also 
encourages an interdisciplinary approach to the construction and teaching of service courses. 

A strong theme in this paper is that mathematicians need to look at the biological sciences and 
pay particular attention to the sweeping changes that are taking place in biological research and 
investigation.  We need to tailor our courses to meet these needs.  A simple ‘watered down’ 
mathematics course with exercises and examples that appear to use the biologists’ language, but 
have little meaningful content does not really meet the biologists’ needs.   We will show how the 
use of a CAS can help to bridge the gap between the mathematics that is needed and the 
manipulations the students are prepared to do.  The emphasis of the pedagogy is on content, 
meaning, and appropriateness of the technique, and not a drill on the mechanisms.  In this paper 
examples are taken from the standard exponential growth as a starting point, population genetics 
as a means of analysis of the effect of natural selection, and, finally, a brief foray into the 
emerging important and mathematically rich field of bioinformatics. 

Introduction: 

Mathematics is an intrinsically beautiful and logically constructed abstract subject.  Most of us 
love it because of these properties.  We enjoy solving the many interesting puzzles that it presents 
to us.  We are thrilled when we can make new discoveries within this system.  However, for 
many of us, our initial attraction to mathematics was the ability to solve a particular problem or to 
gain new insight into an application.  It is this ability to solve problems and provide insight that 
gives mathematics its premier position within the academic community.  The reputation of 
mathematicians is that they are problem solvers.  Unfortunately, it is this author’s view that the 
mathematics we offer in our so called ‘service courses’ is not meeting the needs of all of our 
clients.  This is particularly true in the biological sciences.  Since the remarkable discoveries of 
Watson and Crick and the advent of high performance computing, biology has changed its 
research emphasis and also many of its research techniques.  The discipline has embraced the 
information age and has added many significant areas of research.  The standard “Calculus for 
Biologists” course provides neither the emphasis nor the depth that is needed for students to 
explore the frontiers of their discipline.   

Calculus is an important subject for biologists, but their needs go far beyond the polynomial 
calculus clone of the mathematics majors’ course that seems to be the norm.  One of the primary 
interests of biologists is the need to understand change and how rates of change affect the entire 
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evolutionary and life processes.  They need to be able to look at growth and extrapolate from their 
experimental data.  In fact, one can argue that change is a central issue in modern biological 
research.   Biology is becoming a quantitative/mathematical subject as opposed to its more 
classical descriptive role.  The study of change and rates of change is central to understanding the 
mathematical nature of the subject and, thus explaining, the process. 

This means that an important mathematical subject is an understanding of the derivative and the 
ability to solve differential equations.  This goes far beyond the scope of the standard calculus 
course.  Also, it calls for abilities that are beyond an untrained user of mathematics.  This is 
where the CAS can play an important role.  Derive and the TI hand-held CAS can solve most of 
the differential equations that the students in the biological sciences encounter.  However, we 
now face a major dilemma.  Have we reduced our beautiful subject to mere mindless button 
pushing and are we giving the students a “loaded gun” with which they can do more harm than 
good?  The response to the first question is that we need to insure that the button pushing is 
informed and not mindless.  The answer to the second question is yes we are giving them a 
loaded gun, and we have an obligation to teach a “fire arm’s safety” course.  In other words, we 
need to talk about the nature of the derivative, the information contained within the derivative, 
and how to check that our solution makes sense within the context of the problem.  We need to 
examine differential equations and systems of differential equations for the information they 
contain about their solutions.   We also need to discuss the sensitivity of the equations to the input 
parameters and the stability of the solution.  If numerical techniques are used, we need to give the 
students insight into the appropriateness and stability of the technique.   We need to train the 
students to ask the right questions and to develop a sense of skepticism about their results.  Most 
importantly, we need to develop a confidence within the student that mathematics can address 
their important questions and build an attitude that will foster a confidence and cooperation 
between the two disciplines. 

Our first example will consider the question of appropriateness of mathematical techniques for 
solving a basic and surprisingly rich mathematical idea, namely exponential growth.  This is one 
of the basic equations of mathematical biology. 

Growth of a Bacteria Population 

We start with a very basic problem.   

A bacteria population has a present size of P0 and it is observed to double in size 
every hour.  What will be the size of the population after 5 hours and 40 minutes? 

Let’s consider the population for a period of 8 hours.  We loose no generality in assuming P0=1. 

 
Hour 0 1 2 3 4 5 6 7 8 
Population 1 2 4 8 16 32 65 128 256 
 
If we plot this data we see the familiar shape. 
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Many students in a first college mathematics course are familiar with regression techniques.  
These techniques have found their way into most secondary school mathematics curricula.  If we 
use Derive’s fit function to fit these data with a fourth degree polynomial curve, we obtain the 
following graph. 
 

 
 

This appears to be a very good fit!  In fact, if we evaluate the polynomial at 5.67, we would 
obtain a value of about 49 which would compare favorably with experimental observation.  
However, this solution makes no sense from the standpoint of the biological phenomenon!   

It is at this point that the biology and the mathematics come together to create the model for the 
basic growth.  The biologist has observed that the growth of the population is proportional to the 
size of the population.  In fact, the biologist has observed that the constant of proportionality is 2 
per hour.  Thus at time, t,  

                                                    Pt  = 2 * Pt-1 

Now, the mathematics takes over.  

                           Pt = 2 * Pt-1  = 2 * 2 * Pt-2 = 2 * 2 * 2 * Pt-3 = · · ·  = 2t * P0  
 The three dots in the above equations required a leap of faith, but they do open the door for a 
discussion of mathematical induction.  More importantly, we have derived a general equation that 
is correct for whatever hour we choose.  Also, we see that the 2 in the equation can be replaced by 
any constant of proportionality, λ.  The mathematics has given more than was originally 
bargained for. 

Now comes the really interesting question.  What about time periods that are not exact hours?  It 
is relatively easy to extend the idea to rational values of t.  This would be enough to answer the 
question posed at the beginning of this section.  However, we can use the problem of extending to 
all real values for t to begin a discussion of the calculus.  The extension of the equation to all real 
values brings up the idea of continuity.  Another approach can bring up the idea of linear 
approximation and the derivative.  One can even mention and begin an examination of the basic 
differential equation, 

                                    P
dt
dP

∗=λ   

Of course, at this stage the solution will be premature without a discussion of the exponential 
function.  

The moral of the story is clear.  The biology has lead us to an interesting mathematical excursion 
that will involve interested biology students and score points for the importance of mathematics 
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and mathematical analysis within their discipline.  This is far superior to allocating the biology to 
one example in the course of a mathematical development. 

The next example will show the use of difference and differential equations in the course of the 
analysis of an evolutionary process. 

Hardy-Weinberg Equilibrium and Natural Selection 

We will consider a one locus, two allele genetic trait among a large population that features 
distinct generations.  We will also assume random mating within the population.  These 
assumptions can apply to many fish, coral, and plant populations.  We will assume that the timing 
between generations is as follows: 

           Generation Zygote   Adult         Gametes         Zygote           Generation                                        
                   t                        •          →     Breeding            o ~      →        •                    t + 1 

The arrows indicate two differential survival points.  The first is from the zygotic stage to 
adulthood and the breeding stage.  The second is number of gametes that form the zygotes for the 
next generation.  We combine these two into a single survival or fitness rate.  If we are 
considering a two allele genetic trait with dominant, d, and recessive, r, characteristics we denote 
the survival (or fitness) rates for the traits among the zygotes as Wdd, Wdr, and Wrr.  Note that the 
pairings dr and rd result in the same class of zygote. If allele d is distributed among the 
population with frequency, p, and allele r is distributed among the population with frequency, q, 
and then the following facts hold. 

                                                                  p  +  q  =  1 
                                                     p2 +  2pq + q2 =  (p + q)2 = 1 

The second relationship is important algebraically and also in light of the fact of random mating.  
p2 is the probability of a dd mating, pq a dr mating, and q2 an rr mating.    The total number of 
alleles in the next generation of the population is given by the difference equation: 

                                                 trrtdrttddtt NWqWqpWpN )2( 22
1 ++=+  

The number of d alleles is: 
             tddrttddttd NWqpWpN ,

2
1, )( +=+  

The number of r alleles is:      
             trdrttrrttr NWqpWqN ,

2
1, )( +=+  

The difference equations for the associated frequencies are: 
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Doing some algebraic manipulation keeping in mind that for any t, qt = 1 – pt, we approximate 
this system of difference equations with the system of differential equations: 
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We have used our mathematical analysis to predict the allele frequencies within a general 
population.  However, we need to see how these equations relate to the biological intuition and 
data that our students possess.  Up to this point our mathematical manipulations have been just 
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that, mathematical manipulations.  Let’s use our CAS to display the effects of environmental 
conditions on the allele frequencies.  In essence, we will be looking at the effects of natural 
selection. 

In the following a simple Derive program was written to evaluate the system of difference 
equations for n generations.  We will show a graphical representation of the results of the 
evaluations.  However, prior to this we consider the case where there is no selection process 
going on. 

No Natural Selection 

In this case all zygotes have equal survival rates, i.e. Wdd = Wdr 
 = Wrr .  Then since p + q = 1, we 

have  

                                              pt+1 = pt     and      qt+1 = qt 

for all t.  This means that the system is in an absolute equilibrium and the frequencies remain 
constant throughout time. 

Selection against the dominant allele 

Since it is the relative frequency of the W’s that matters in our difference and differential 
equations and not the population size, we will assume that the W’s are values between 0 and 1.  
In this case we will choose Wdd = Wdr = .8 and Wrr = 1.  This difference between the survival 
values, although small, will prove to be deadly to the dominant allele.  In the following graph we 
see that within about 70 generations the dominant allele is all but extinct within the population. 

 

                                         
Even if the original difference in the survival rate is very small, the effect is the same: the 
dominant allele dies out.  It may take thousands of generations, but eventually an equilibrium 
state is achieved at the expense of the dominant allele.  Notice the shape of the curve.  Because of 
the initial superiority of p over q, the dominant allele while decreasing in frequency appears to be 
resisting the effects of selection.  However, as q increases the rate of decrease for p accelerates.  
This effect can be predicted by the differential equation form of the selection equations.   

Finally, note that the shape of the curve for q is essentially a reflection of the shape of the curve 
for p. 
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Selection against the recessive allele 

In this case the shoe is on the other foot.  We will choose Wrr = Wdr = .8 and Wdd = 1.  Some 
interesting questions for our biology students are: What assumptions are we making when we set 
the survival rate of the heterozygote to be the same as that of the homozygote that is being 
selected against?  Do we need to make these assumptions?  Do they make sense from a biological 
standpoint?  We will give the recessive allele an edge by assuming that it is the most common 
allele in the population. 

 

                                             
While the recessive allele is not quite extinct after 90 generations, it is headed for extinction.  
What is interesting is that the shape of the curve is different than that in the previous case.  Here 
the initial descent is very sharp and the curve flattens out as the allele nears extinction.  Can this 
shape be predicted from the differential equation form of the system of equations for the allele 
frequencies? 

Selection in favor of the Heterozygote 

This case is more interesting than our previous two cases and the results are less to be expected.  
We will assume that Wde  =  1.  We will not set the selection against the remaining two 
homozygotes to be equal.  We will set the selection against the recessive homozygote (1 – Wrr) to 
be four times as great as the selection against the dominant homozygote.  Thus, we set Wdd =.9 
andWrr = .6  
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In this graph we considered two examples.  In the first, p was set to its usual value of .9 and q= .1.  
In the second we set p and q both equal to .5.  In both cases we see that  p eventually tends to .8 
and q tends to .2.  This opens the door to a discussion of equilibrium situations.   These values 
can be attained by setting the derivatives in the differential equation form of our equations equal 
to 0.   

Selection against the Heterozygote 

This case occurs very rarely in nature.  However, it is interesting to consider.  We will consider 
Wdd = Wrr = 1 and Wdr = .8.  We will only graph the value of p since the result for q will be clear.  
The upper graph is typical of the graph for any choice of a value for  p above .5.  The lower graph 
is typical for any choice of p less than .5.  The middle graph is, of course the result of choosing p 
equal to .5. 

    
In this case we have an unstable equilibrium.  The value of .5 is an equilibrium point, but it is 
repelling for all values of p other than .5.  We see that any movement away from .5 will result in 
the elimination of one allele from the population. 

Conclusion 

In each of the individual cases above, it is possible to substitute our numerical values for the W’s 
and use our CAS to obtain analytical solutions.  In fact, it may be a useful exercise to use the 
CAS in this way.  On the other hand, our students will gain little insight into the overall 
evolutionary process over what they can see using the graphs and analyzing the derivative of the 
frequencies in each case.  The answer is not always the answer.  It is the process and an 
understanding of the derivative that provides the insight.   

The numerical technique that was used to solve the equation is among the simplest possible.  
However, it is representative of the assumptions that we made for our population, namely, that 
there are distinct generations.  In this case, the differential equation is the approximation to the 
actual data.  In other cases, the differential equation may be more representative of the biological 
process. 
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The Biology of the Future – Bioinformatics 

The previous sections were closely linked to the relationship of biology to analysis of difference 
and differential equations.  In this section we will look at the emerging field of bioinformatics.  In 
one sense, it is more descriptive than analytical.  However, there are rich applications in terms of 
algorithmics, pattern matching, and statistical analysis.  These subjects all have their roots in 
mathematics.  A course for biology majors should include an introduction to the techniques of 
DNA analysis and string comparisons. 

The advent of computing power coupled with the advances in molecular biology has opened new 
and exciting areas for biologists.  It also provides opportunities for mathematics departments 
while teaching students in the biological sciences.  In order to understand modern biology 
students need to be able to generate hypotheses, formulate algorithms for searching large 
databases, evaluate the efficiency of the algorithms, and compare their results with real data.  
Many topics and techniques from discrete mathematics apply to the conduct of good research in 
modern biology.  The appropriate and efficient use of technology provides an opportunity to do 
solid analysis. 

This paper will not delve into all of the possibilities that are available in this rich field of 
investigation.  It will illustrate and apply a programmable CAS for the alignment of two, 
relatively short DNA sequences.  This investigation will illustrate the algorithms that are working 
in the major tools that are available to research biologists through services offered on the web via 
PubMed and other similar sites.  In the United States these resources are available through the 
National Center for Biological Information web site which is linked to several web sites 
throughout the world.  

DNA with its well known double helical structure consists of four nucleotides: Adenine (A), 
Cytosine (C), Guanine (G), and Thymine (T).  These nucleotides bind together according to 
certain rules to form chains that contain genes and the basic building blocks of life, itself.  A 
fundamental problem for researchers is to compare a sequence they may have encountered with 
the database of known DNA sequences.  

Sequence comparison is far from simple.  First of all, where in the given sequence does one begin 
the comparison? There is no clear cut beginning or end to such a sequence.  The sequence can 
change as a result of mutation, genetic drift, insertions, or deletions.  How do we account for 
these changes and still recognize similarities?  The combinatorial possibilities are overwhelming! 

In the following we will use Derive to illustrate some of the basic techniques of simple sequence 
comparison.  The first will be a simple matching of two sequences.   

Dot Plots 

We begin with two simple nucleotide sequences.  They are defined as Derive variables, s1 and s2. 
   s1 ≔ AACCTATAGCT 
   s2 ≔ GCGATATA 

The question that we will address is whether these sequences share any common subsequences 
and can they be aligned in a way to show any similarities? 

Our first strategy is to create what is known as a Dot Plot.  This is merely a data representation of 
the two sequences as a matrix.  The sequence, s1, is used to label the columns and s2 labels the 
rows.  A dot or star is placed in cell i,j if the i-th letter of s2 matches the j-th letter of s1.  
Otherwise, the cell is left blank.  One mathematical benefit of this technique is that students learn 
about matrices and setting the contents of the various cells within a matrix. 
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This strategy can be implemented in a Derive program to produce the following matrix.  This 
program is straight forward and is easily explained to the students.  Viewing the program further 
reinforces the students’ understanding of the layout of a matrix. 

        
If one carefully observes this matrix, the user can observe some patterns of *’s along certain 
forward diagonal sequences.  These sequences mean that the corresponding subsequences of the 
two strings match up.  However, we are dealing with two unrealistically short strings of DNA in 
this example.  Longer sequences would produce much more cluttered Dot Plots.  We need some 
strategy to clean up the display so that the matching subsequences will be more apparent.   

One simple strategy is to display only those positions where at least one of the adjacent 
nucleotides matches the nucleotide in the other sequence.  This requires a modification of our 
Derive program.  It also requires an understanding of some basic logical inference in order to 
construct the decision statements to implement the strategy.  The Derive program for this is 
included in the author’s DFW file entitled Bioinformatics.dfw.  The new matrix is shown below 
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In this matrix the matching subsequence TATA stands out more prominently.  It is the longest 
matching subsequence, however there is another possibility, ATA.  We choose a match of the 
form: 

                                   A A C C T A T A G C T 
                                   G C G A T A T A  -  -  - 

But, exactly how good is this match?  There are other possibilities. 

The  –‘s in the above representation of s2 are called “gaps.”  They indicate an insertion in the 
other sequence, s1, or a deletion from s2.  The common term for this is an “indel”.  The inclusion 
of gaps in a sequence further complicates our matching problem.  The simple inclusion of three 
gaps in s2 increases the number of possible target sequences to C(9, 3) = 220 possible matches.  
If we allow gaps in  both sequences can expand the possibilities to the hundreds of thousands.  
For example we could propose a match of the form. 

                                  - A A C C  - T A T A G C T 
                                 G  -  -  C G A T A T A -  -  - 

Is this a better match than the above?  Also, how does one discover such matches?  Obviously 
Dot Plots and Refined Dot Plots can take us only so far in our quest for a sequence match. 

One fact to keep in mind is that indels, although found quite often in DNA sequences are not a 
common biological occurrence.  They are a ‘mistake’.  It is just that we are dealing with billions 
of DNA strands for even the simplest of biological specimens.  So, even low frequency events 
can be found.  We compensate for this by allowing gaps, but establishing a penalty for them in 
the overall scoring of sequence match. 

Scoring Matrices and More Sophisticated Matching Techniques 

By how much should an exact matching of two nucleotides benefit an alignment?  What penalty 
should be assessed for a mismatch?  A gap?  These are questions that have quantitative answers, 
but no exact answers.  It is necessary to rely on our colleagues in the biological sciences for 
answers.  The answers are based on heuristics and there are more than one set.  When these 
questions are decided upon, then we construct a scoring matrix.  The popular BLAST (Basic 
Local Alignment Search Tool) scoring matrix assigns a score of 5 to a match and penalties of -4 
for a mismatch and -8 for a gap.  In this presentation, another popular scoring scheme is used.  A 
match is assigned a score of 1, a mismatch is given a score of 0, and a gap is penalized with a -1.  
The scoring of DNA sequences is relatively simple.  The situation for Protein sequences is more 
complex due to the fact that there are 20 Amino Acids and nature freely substitutes one for 
another in some cases.  This discussion will deal with DNA and the following scoring scheme 

 A C G T 

A 1 0 0 0 

C 0 1 0 0 

G 0 0 1 0 

T 0 0 0 1 

with a gap penalty of -1.    

The algorithm for constructing the score for the alignment of two DNA sequences using this 
scheme is due to Needleman and Wunsch.  It is a dynamic programming algorithm.  It is 
described at the top of the next page. 
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Needleman-Wunsch Algorithm 

0.    Lay out the matrix with s1 across the top and s2 down the left.  
The dimension of the matrix is (DIM(s2)+1) X  (Dim(s1) +1). 

1. Place –(i – 1) in cell i of row 1 and –(j – 1) in cell j of column 
1. 

2. Starting in cell (i, i) with i >  2, compute the following three 
values: 

a. The value in the adjacent cell to the left  minus 1 

b. The value in the adjacent cell above minus 1 

c. The value in the cell diagonally above the cell to the 
left plus 0 if the cell represents a mismatch and plus 1 
if the cell represents a match. 

3. Choose the maximum of these three values and place it in the 
cell.  Note which cell was chosen for the computation of the 
value in the cell. 

4.  Repeat 2 a, b, and c  and 3 above for all of the cells remaining 
in row i and  column i.  

5. Repeat steps 2, 3 and 4 until all of the cells of the matrix are 
evaluated. 

6. The value of the cell in the lower right corner is the score of 
the alignment.  The alignment can be retraced starting in this 
cell and moving in the direction indicated by the present cell. 
A diagonal move indicates an alignment of the two nucleotides 
represented by the cell.  A vertical move indicates a gap in s1 
and a left move a gap in s2. 

Instead of applying this algorithm to s1 and s2 given above, we apply it to two slightly more 
interesting sequences. 

s3 ≔ ACTCG 
s4 ≔ ACAGTAG 
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In the interest of saving space the sequences were not written across the top and along the left of 
the matrices.  The left hand matrix is the matrix of scores.  The score for the alignment on the 
right is 2.  Is this a good score?  That needs to be tested.  One popular method is to align the first 
against several rearrangements of the second using this algorithm.  Then note the median and 
standard deviation of the resulting scores.  If the score of the present realignment is far enough (2 
or more standard deviations) above the median, we suspect that we have a good alignment.   

The second matrix tells the direction that determined the score in each of the cells.  A 1 indicates 
that the score was determined by the cell to the left.  A 2 indicates the cell diagonally above, and 
a 3 the cell directly above. 

The third matrix is the alignment that results from starting in the lower right cell and generating 
the alignment in reverse by following the directions indicated by the second matrix.  

This figure was generated using the Derive program NWAlign that is found in the DFW file, 
Bioinfomatics.dfw that was submitted with this paper. 

The Semi-Global Alignment  Algorithm 

 The Needleman-Wunsch Algorithm appeared to do a fine job on the sequences given above; 
however, consider the following example from our Derive file.  

(NWAlign(ACGT, AAACACGTGTCT)) 3 

                                       - - - -  AC- - G - - T  
                                      AAACACGTGTCT  

This is clearly not a good alignment!  The first sequence is an exact subsequence of the second.  
The problem is that the Needleman-Wunsch Algorithm penalizes gaps at either end of the 
sequence at the same rate that it penalizes gaps in the middle.  The gaps in the middle are caused 
by indels.  The gaps at either end may be due to incomplete sampling.    

The algorithm needs to be modified to correct this problem.  The obvious cause of the problem is 
in step 1 of the Needleman-Wunsch Algorithm.  Instead of applying the gap penalty of -1 to 
leading and trailing gaps, treat them as mismatches and assign a cell value of 0 to all of the cells 
in row 1 and column 1.  This strategy is implemented in the Derive program SGAlign in the 
Bioinformatics.dfw file.  The following is the result. 
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This is obviously the correct alignment.  The score for this alignment is 4.  If one checks out the 
score for the Needleman-Wunsch algorithm the score is –4.   

Conclusion 

We have illustrated only the barest beginnings of bioinformatics.  It should be apparent that there 
are rich areas for mathematical discussion and the application of mathematics and mathematical 
reasoning.  As the area grows more and more opportunities will arise for mathematics.  This 
means that we will need to be constantly evaluating what we teach in our mathematics for 
students in the biological sciences.  In the above we saw that an understanding of matrices was 
essential.  We used the dynamic programming algorithm to efficiently reduce the order of the 
computations involved in aligning two sequences.  We did not discuss the analysis of these 
algorithms and the general topic of Analysis of Algorithms.  Certainly, this subject deserves 
coverage in a mathematics course for biologists.   

The structure of protein sequences is a very complex subject.  Sequence alignment deals with a 
linear structure.  Protein sequences have a 3-D representation.  Looking at their sequencing is not 
sufficient to completely describe the Protein.  It is necessary to determine where the protein 
“folds.”  This is a difficult question and it requires the cooperation of mathematicians, computer 
scientists, biologists, and bio-chemists.  We have a rich source of research problems and 
pedagogical opportunities in our future. 

Summary 

In Bio2010  the Computer Science and Mathematics Panel makes the following statement: 
“Rather than doing the standard calculus, linear algebra, and differential equations, a one year 
course on mathematics for biologists should be designed.  This course should be based on 
biological examples and include methods of solving problems, but with more emphasis on 
standard packages, …, than a course for mathematics majors …” [ 5, p169]  This paper was an 
attempt to echo that thought and give some examples for course content.  As was stated earlier: 
the answer is not always THE answer.  Many times the answer lies in constructing the model and 
knowing what the model can tell about the biological process. 
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