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Abstract
A computer laboratory component has become part of many begin-
ning courses on ordinary di¤erential equations. Here students are
asked to numerically solve initial value problems, but little attention
is given to the accuracy of such numerical solutions. Indeed, many
text books only pay lip service to this important part of numerical
analyses, possibly because the authors believe that the topic is too
advanced for beginners. In this article we o¤er a simple DERIVE
procedure that provides a measure of the accuracy of the Runge-
Kutta order 4 DERIVE routine "RK". The procedure has a nice
spin o¤ too: it often provides a superior numerical result from the
algorithm.

1 Introduction
At the TUT in Pretoria, an introduction to ordinary di¤erential equations
(ODEs) is taught in the PC laboratory, where students are asked to solve
nonlinear equations and systems. Indeed, computer algebra systems, such as
Mathematica [8], Maple [6], MATLAB [7], and Derive [1], have made possible
a revolution in the way beginning di¤erential equations courses are being taught.
The emphasis used to be on solution techniques for various classes of equations
which made the courses primarily a popouri of "recipes". Today the emphasis
is more upon systems, nonlinear equations, and computer explorations.

Many beginning texts discuss uniform step size numerical techniques such
as Euler’s method, the improved Euler’s method, and many mention Runge-
Kutta order 4 (without a derivation). But today’s computer algebra systems
generally employ a suite of much more advanced algorithms than these, for
example Mathematica version 4.2 uses an Adams method of order 12 [8] to
solve non-sti¤ systems.

But advanced as these algorithms are, they are by no mean infallible and even
simple appearing second order equations can give rise to completely erroneous
numerical solutions which appear quite plausible when plotted (for example see
[3]). Thus we feel it is important for a student (or other solver) to have a method
of testing the accuracy of the numerically generated solution.

One need not have a strong background in numerical analysis to understand
that things can go wrong and we give a simple strategy for solving system initial
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value problems (IVPs) such as

²x = f (x, y, t)
²
y = g(x, y, t)

x(0) = a y(0) = b

9
>=
>;

(1)

(here t is the independent variable which we refer to as time and the dots refer
to di¤erentiation with respect to t) which permits testing of the accuracy of the
numerical result and indeed this strategy often produces a superior numerical
result from the algorithm.

2 The residual
One of the strategies suggested by Knapp and Wagon [5] to gauge how well
the numerical algorithm is working and to give a measure of the accuracy of a
solution is by substituting back into the equation and examining the "residual",
that is to observe if the equation is "satis…ed". They point out that this is not
an infallible method, merely one tool in a toolbox. The strategy discussed below
is a consequence of trying to compute the "residual" for a numerical solution.

We focus on second order ordinary di¤erential equations as these are the most
often encountered types in beginning courses. But there really is no restriction
on the order of the equation. Suppose we wish to solve a typical second order
di¤erential equation

²²x + f (x, ²x) = g(t), (2)

subject to the initial conditions x(0) = a,
²
x(0) = b. The traditional approach is

to introduce the auxiliary variable y = ²x and numerically solve the 2£2 system

²x = y
²
y = ¡f (x, y) + g(t)

x(0) = a, y(0) = b.

9
>=
>;

(3)

In order to substitute back into the equation we need the second derivative of x,
but this technique does not compute it. The following easy strategy produces
the second derivative: Di¤erentiate equation (2) and solve the 3 £ 3 system

²
x = y
²y = z
²z = ¡ d

dt
ff (x, y)g + ²g(t)

x(0) = a, y(0) = b, z(0) = ¡f (a, b) + g(0).

9
>>>>=
>>>>;

(4)

By doing so, we numerically compute the second derivative of x, z = ²²x. Math-
ematica does this e¤ortlessly. It computes an "interpolating function" for z(t)
and so the "residual"

z(t) + f (x, y) ¡ g(t)
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can be plotted. Some more details on this may be found in [4]. The "residual
method" is not always satisfactory (as is well known). To plot the "residual" in
DERIVE takes quite an e¤ort and this will not be discussed here.

3 The estimated error
We take the idea of computing a second solution using the same algorithm
and step size, a little further. We shall give examples where the two solutions
produced are almost identical, for a while. Using the same step size in
DERIVE’s RK routine these solutions can be produced using the same number
of iterations and can thus easily be compared. Because the RK routine returns
a matrix from which the solution x(t) as well as y(t) can be extracted, we can
easily subtract the 2 £ 2 system solution matrix from the 3 £ 3 solution matrix
and observe the result either row by row or graphically by appending a "time"
column.

Assume that the exact solution of the IVP (1) is say x(t). Assume further
that the numerical solution produced by DERIVE’s RK routine for the 2 £ 2
system (3) is say x2(t) while that produced for the 3 £3 system (4) is say x3(t).
De…ne the error E(t) in the RK routine to be

E(t) = x(t) ¡ x2(t) (5)

We de…ne the estimated error e(t) in the RK routine to be

e(t) = x3(t) ¡ x2(t) (6)

There are many examples of IVPs with constant coe¢cients which are numer-
ically unstable. In most examples we have examined, e(t) is an astonishingly
good estimate of E(t). We discuss one such IVP (with constant coe¢cients) in
Section 4 below. We give further evidence that e(t) might be a good estimate
of RK accuracy by examining an IVP with no known solution but which does
have a known phase portrait in Section 5. Finally, in Section 6, we give an
example of an IVP with no known solution or phase portrait, but e(t) agrees
with an error analyses done by Knapp and Wagon [10] using Mathematica. We
believe that determining e(t) is another tool which can be added to Knapp and
Wagon’s toolbox [5]. A similar strategy is used when solving a system (1) which
cannot be written as a second order ODE. In this case, two estimated errors
must be determine, one for x(t) and one for y(t). A snapshot of the commands
used is given in the Appendix in Section 8.

4 A linear IVP
Consider

²²
x ¡ 2

²
x ¡ 3x = ¡4et

x(0) = 2, ²x(0) = 0

)
(7)
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Figure 1:

This has exact solution
x = e¡t + et = 2cosh t

Turning (7) into a 2 £ 2 system

²x = y
²y = 2y + 3x ¡ 4et

x(0) = 2, y(0) = 0

9
>=
>;

(8)

we obtain a solution using RK with h = 0.1 and n = 60, shown in Figure 4.1.
Solving the equivalent 3 £ 3 system (4),

²x = y
²y = z
²z = 2z + 3y ¡ 4et

x(0) = 2, y(0) = 0, z(0) = 2

9
>>>=
>>>;

(9)

at h = 0.1 and n = 60 produces a solution which stays close to the true solution
for a longer period, as shown in Figure 4.2. A close scrutiny of Figure 4.2 reveals
that the two solutions start to diverge at about t = 3 time periods.
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Figure 4.2.
A glance at the error tables given in Figure 4.3 shows that, we can expect three
decimal accuracy for about 1.5 time periods and two decimal accuracy for 2
time periods for the RK routine with step size h = 0.1.

Figure 4.3

5 A second order IVP with know phase portrait
An innocuous appearing di¤erential equation (10), due to John Polking of Rice
University, discussed brie‡y in [5] and in some detail in [9], is a numerical night-
mare and hence useful for student investigations because just about everything
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which can go wrong does.
²²
x ¡ (

²
x)2 + x = 0 (10)

Turning this equation into a 2 £ 2 system

²
x = y
²
y = y2 ¡ x

)
(11)

it is easy to see that the origin in the phase plane is the only critical value and
it is a center. There is a parabolic separatrix which divides the phase plane
into two regions, one for closed bounded trajectories, the other for unbounded
trajectories. But this is not at all obvious. By eliminating t and solving

dy
dx

=
y2 ¡ x

y
,

it turns out that the "solution" y(x) is given by

ke2x = 2y2 ¡ 2x ¡ 1

Hence, for each initial conditions of the form (x(0), y(0)) = (x0, 0), the tra jectory
in the phase plane is given by the equation

(2x0 + 1)e2(x¡x0) ¡ 2x ¡ 1 + 2y2 = 0. (12)

A phase portrait is shown in Figure 5.1.

Figure 5.1.
The initial conditions x(0) = ¡1/2, y(0) = 0 determine the parabolic separatrix
x = y2 ¡ 1/2. Solving the system (11) for these initial values with a step size
of h = 0.1 with n = 200 we obtain the trajectory shown in Figure 5.2.
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Figure 5.2.
Since we know the tra jectory should be a parabola, this trajectory is clearly
incorrect. Even decreasing the step size to h = 0.05 fails to produce the correct
trajectory, it just takes longer to go o¤ the mark, this is shown in Figure 5.3.

Figure 5.3.
Solving the equivalent 3 £ 3 system (4),

²
x = y
²y = z
²z = 2yz ¡ y

x(0) = ¡1/2, y(0) = 0, z(0) = 1/2

9
>>>=
>>>;

(13)
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at h = 0.1 and n = 200 produces the the correct trajectory shown in Figure 5.4.

Figure 5.4.

A plot of the two solutions on the same set of axes shows that they clearly
diverge from one another and this should also indicate to the student (or solver)
that the algorithm is only working properly for a short time, as shown in Figure
5.5.

Figure 5.5.
By subtracting the two solutions we can plot the estimated error in the solution
as follows in Figure 5.6.
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Figure 5.6.
We claim that, for this IVP, the RK routine with step size h = 0.1 is accurate
to four decimal places for t = 4..

6 Du¢ng’s equation
In [10] the following form of Du¢ng’s equation was studied:

²²x + 15
100

²x ¡ x + x3 = 3
10 cos(t)

x(0) = ¡1, ²x(0) = 1

)
(14)

From Table 1 (generate by Mathematica) they predict that the solution is correct
to 4 decimal places for t = 20 at default working precision, that is when local
error is of the order 10¡6. We will see that, using a step size of h = 0.032 (that
is local error is of the order (0.032)4 ¼ 10¡6) in the RK routine con…rms this.
Turning this equation into a 2 £ 2 system IVP yields:

²x = y
²
y = x ¡ x3 ¡ 15

100y + 3
10 cos(t)

x(0) = ¡1, y(0) = 1

9
>=
>;

(15)

and a 3 £ 3 system IVP yields:

²
x = y
²y = z
²z = y ¡ 3x2y ¡ 15

100 z ¡ 3
10 sin t

x(0) = ¡1, y(0) = 1, z(0) = 3
20

9
>>>=
>>>;

(16)

Plots of the solutions appear in Figure 6.1.
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Figure 6.1.
Clearly the two solutions diverge at about t = 60, and so the RK routine is
producing numerical garbage after t = 60. We estimate the error as explained
above in (6) and obtain Figure 6.2, con…rming this observation.

Figure 6.2.
A closer look at the graph of Estimated Error is revealed in Figure 6.3.
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Figure 6.3.
In the region of t = 20 we see that we have four decimal place accuracy which
agrees with Table 1 of [10]. Mimicking their words "we are willing to bet" that
our estimated accuracy is correct for a time interval t = 20

7 Conclusion
We have selected three representative examples for which numerical di¢cul-
ties can be observed, but there are many others. Without a priori knowledge,
poor numerical performance may be di¢cult to spot. Working with two di¤er-
ent solutions produced by the RK routine (with the same step size) we have
produced a measure of accuracy for the algorithm. Comparing these two so-
lutions graphically may often indicate where di¢culties arise. There are many
innocuous appearing nonlinear equations that students will encounter, and it is
therefore important for them to be aware that numerical problems are common,
and to know how to detect them. Our technique is but one tool in a toolbox for
detecting numerical problems.
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