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As teachers of mathematics, we understand how theorem and proof provide the underpinnings of 
the complex processes that form calculus techniques. However, the students who study calculus 
often view calculus as consisting chiefly of processes and some quantitative results, independent 
of and unrelated to the axioms and theorems underlying the results. This paper presents my 
opinions and some evidence as to why we do and should emphasize theorem in the teaching of 
calculus.  
 
A story I am fond of retelling is getting to know the businessman husband of a friend of mine. 
When he discovered that I am a mathematician, he exclaimed that he recalled the Fundamental 
Theorem of Calculus from his college studies some 20 years earlier. “Why that is how you can 
get a speeding ticket on a toll road just from your clocked ticket-in and ticket-out”, he proudly 
exclaimed. Although he has the names of the Mean Value Theorem and the Fundamental 
Theorem confused, the power of the underlying mathematics remained with this friend long after 
our manipulative analytical techniques had worn off. It is my opinion that a sense of the strength 
and power of mathematics should be a goal of any calculus course, and using theorem is an 
excellent way to develop this sense.  
 
Of course, when we as mathematicians teach the Fundamental Theorem of Calculus, we can’t 
help saying “ain’t it great?” We marvel at the two-sided link of the differential and integral 
calculus. But just that marvelous synchronicity isn’t a sufficient reason to teach calculus to the 
hundreds of thousands of students who encounter it each year. We have to choose what to teach 
and how to teach it according to the needs and learning objectives of our students.  
 
In order to examine our curriculum and determine the essential elements of a successful calculus 
course, we must consider each of the interacting components: environment and audience, course 
outcomes, required content, synthesizing the content delivery with other goals (such as 
developing communication skills), and assessing understanding. To begin, an understanding of 
our classroom audience is essential to the success of any mathematics course. “Audience” is a 
misnomer, since of course we really aim to have “participants” or “learners”. We should be 
designing our calculus curriculum for the majority of our students. Who these students are varies 
from school to school, and differs between the experience of high school calculus students and 
those enrolled in college. The budding mathematicians in the calculus course are, alas, few and 
far between. We should hope that a well-designed curriculum will help them to continue 
successfully on their chosen path while ably serving a larger clientele. In this paper, we will 
assume that the student who is prepared for calculus is reasonably skilled at algebra, 
trigonometry, and the rudiments of function; and is enrolled for a variety of reasons.  
 
Let us investigate the reasons for young students to choose to enroll in calculus, and determine 
how a study of calculus can help those students develop skills necessary for  their chosen field as 
well as enhance their education in general. In turn, examining the needs of our client disciplines 
can help us to modify course objectives. I teach at a science-oriented liberal arts college, so many 
of the students will actually use calculus tools for advanced studies in their undergraduate science 
career. For example, they are expected to model and evaluate definite integrals, perform 
integration by parts, estimate series, or choose appropriate curves to fit data.  It is true that 
students often need to be reminded at that later date of the actual calculus manipulations. 
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However, we hope that they do have the necessary habits of mind that allow them to understand 
the nature of the mathematical problem involved and sufficient facility with the material to 
research and implement correct solution methods. In my opinion, spending class time on the 
study of theorem in calculus will help these students develop those habits of mind.   
 
While chemists, physicists, computer scientists and engineers will definitely use calculus again in 
their undergraduate work, at my institution we also have many prospective medical doctors and 
other liberal arts students who enroll in calculus. In addition, some universities require calculus 
for entrance into highly competitive specialized programs. How can we effectively serve these 
students? The liberal arts environment can help to structure the curriculum so that these students 
achieve liberal arts educational objectives. In a mathematics course, these students can develop 
reasoning skills, understand the concept of rigor, implement problem solving strategies, and 
communicate understanding of technical matters.  The examples of the study of theorem below 
will illustrate how we can make sure these students develop such skills in calculus.  
 
When designing the mathematics curriculum, we often have a content list in mind. However, 
there are skills and development objectives within each mathematics course that extend beyond 
familiarity with content and preparation for a next course. From general mathematics objectives, 
we can distill calculus objectives. We approach topics via the “rule of 4” so as to ensure the 
student can address problems in both mathematics and other disciplines from multiple avenues. 
We hope to instill good number sense and develop both logic skills and reasoning. Students do 
need some drill exercises so that they can accurately use the tools to solve problems. Through this 
work they should develop an appreciation for the idea of using the right tool and having a basic 
skill set. With all these objectives in mind, there are certainly multiple goals for each teaching 
session. Using the study of theorem is more suited to some of these goals than others. Finding the 
right blend of skill, drill, theory and common sense to develop a successful student is the ultimate 
goal of the teacher who hopes to do more than just cover 5 chapters of content in the time 
allotted. Finally, we hope the student will get a good sense of how calculus fits together—the big 
picture. Let us see how the study of theorem can help this happen.  
 
The Intermediate Value Theorem is particularly important in the development of young 
mathematics thinkers. This is one of the first theorems that students encounter of the form “If p, 
then q.” In preparatory coursework for calculus, most theorems are of the form “p if and only if 
q” or restatements, replacing equal items for equal items. Think of the Factor Theorem, for 
example, which equates roots of polynomials with factors. Or consider the Pythagorean identities 
in elementary trigonometry, which restate the Pythagorean Theorem. But the Intermediate Value 
Theorem requires the student to use Modus Ponens to make inferences about the values between 
the endpoints of a continuous curve. Furthermore, it is an existence theorem that is not 
constructive, so the inference about “c” is difficult for students to grasp. A graphing technology is 
useful for illustrating the theorem. We begin with just the endpoints plotted, a colored band 
spanning the y-values in the range. Then a particular function can be graphed, and it is great if the 
function values actually exceed the range of the band. The guarantee of intermediate values is by 
no means a restriction on the possible y-values of the function, which requires students to grapple 
with the distinction between a universal statement and a particular example. The theorem can be 
used to further develop the idea of inverse images of functions, since the intermediate value “N” 
implies the existence of at least one preimage “c”, although there may be several.  
 
Figures 1 and 2 below demonstrate how a graphic illustration of the Intermediate Value Theorem 
can help assist student understanding. Figure 1 shows the premise of the theorem for the domain 
[a,b] = [-3,3]. The shaded band represents the intermediate values guaranteed to be achieved by 
the theorem. Figure 2 includes a particular function which satisfies the hypothesis of the theorem. 
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This is a nice choice of function, since additional y-values are achieved, beyond those guaranteed 
by the conclusion of the theorem. Additional images to include in a student discussion should 
incorporate graphs where the functions have discontinuities, to demonstrate the necessity of the 
hypothesis and the fact that some, but not necessarily all, y-values will be excluded if the 
hypothesis is not valid.  
 

 
 

Figure1: The Intermediate Value Theorem 

 
 

Figure 2: A function which satisfies the hypothesis 
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The Intermediate Value Theorem has some nice direct applications that are relevant to  
technologically savvy students. They are accustomed to graphing functions on their calculators, 
and a discussion of the way the calculator is creating this approximate image is appropriate. A 
quick zoom will reveal that the calculator is limited by its pixels and that line segments are not 
always the best way to “connect the dots”. That the calculator dots are often connected across 
discontinuities (such as vertical asymptotes) serves to illustrate the assumptions inherent in the 
calculator plotting code: the program assumes that the function is continuous on a closed domain. 
Similarly, the classic bisection method of finding roots uses the Intermediate Value Theorem to 
infer the relative location of the root. This illustrates what is going on in the calculator’s black 
box when students use handheld technology to compute a root or an intersection.  
 
As part of the assessment of student understanding of the theorem, I usually ask the student to 
first explain why the Intermediate Value Theorem may be applied to the graph in Figure 3.  Then 
I either ask the student to provide a list of all intermediate values guaranteed by the theorem or I 
select an appropriate intermediate value and ask the student to locate the corresponding input “c”. 
What I find is that a thorough discussion of relevant graphs allows students to identify the 
intermediate values and find “c” with a fair degree of success. The point where students 
experience difficulty is in explaining why the theorem is applicable in the first place. A typical 
answer to this question of why the theorem applies is “because I could find the “c”.” Discussion 
of graphs where the theorem does NOT apply is helpful, but the Modus Ponens nature of the 
theorem is difficult for students to grapple with. So we have several wonderful reasons to use the 
theorem in the classroom: it illustrates what is going on in their calculator, we help them develop 
logical understanding in formal implication statements, and we help them comprehend the need to 
understand the hypothesis component of a theorem.  
 

 
 

Figure 3: Intermediate Value Theorem Assessment 
On [-3,3], what is the range of intermediate values guaranteed by the theorem? 

 
Having experienced some student confusion as to the hypothesis and conclusions of the 
Intermediate Value Theorem, successfully introducing the Mean Value Theorem is the 
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instructor’s next big challenge. However, the students who have spent some time studying the 
logic behind the Intermediate Value Theorem are better prepared to handle the logic of another 
“if—then” implication statement. The Mean Value Theorem is a powerful application of the 
differential calculus, in its meaning and applications. Presented as a graphical theorem (a secant 
and tangent line are parallel) together with its analytical meaning (the average rate of change is 
achieved as an instantaneous rate), this theorem offers a wonderful opportunity to tie graphics and 
analytical understanding together. Its power is revealed in applications. We can finally prove 
analytically that the student’s common sense understanding of mathematics is correct: when a 
function has positive derivative, the curve must increase. This is a first instance where the student 
witnesses that a powerful theorem will have several important corollaries. Showing that a car 
MUST travel at exactly 45mph at least once on a one hour 45 mile trip is enough to set in the 
student’s mind for 20 years, as evidenced by the opening anecdote. And we can confirm that the 
student’s intuition on working with antiderivatives is correct; there is just one general answer.   
 
Once again, it is helpful to use a graphing device to look at several graphs until the student can 
themselves identify whether the theorem applies and locate the “c” value where the tangent is 
parallel to the secant. Studying the Mean Value Theorem after the Intermediate Value Theorem 
should reveal an increase in student understanding of the logic of a theorem. They should have 
less difficulty with the “if—then” format, be more comfortable with the idea that the theorem 
does not always apply, and know what may or may not be concluded if the hypothesis is void. It 
is interesting to note that the hypothesis of the theorem varies from text to text. Stewart’s texts 
require the function to be differentiable on the interval [a,b], while Larson and Thomas require 
the weaker condition of continuous on the closed interval and differentiable on the open set. An 
informal survey of 12 more calculus texts in my office, from Apostol to Ostebee-Zorn, found 
only one other variation from the traditional weaker hypothesis.  
 
Depending on time constraints in the selection of content, it is interesting to first develop Rolle’s 
Theorem in class and then prove the Mean Value Theorem from it. Rolle’s Theorem follows 
immediately from Fermat’s result that “what goes up must come down”, so it provides 
confirmation of one’s common sense. It is also nice to show that Rolle’s Theorem is a special 
case of the Mean Value Theorem. The Mean Value Theorem for Definite Integrals is also a direct 
application of the Mean Value Theorem, and it has a lovely graphical interpretation in addition to 
its analytical form. Where the Mean Value Theorem invokes parallel line segments as a result on 
rates, the Mean Value Theorem for Definite Integrals invokes matching areas as a result on 
accumulation. Completing the proof as a straightforward application of the Mean Value Theorem 
serves to reinforce the primary theorem and emphasize the power of a theorem may lie in 
interpolation to similar results. The Mean Value Theorem for Definite Integrals also is highly 
useful, in averaging functions (such as inventory models) and root mean square measurements. 
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Figure 4: Rolle’s Theorem as “what goes up must come down” (and vice versa) 
 
 
 

 
 

Figure 5: Mean Value Theorem as Rolle’s Theorem with your head atilt. 
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Figure 6: The Mean Value Theorem for Definite Integrals as “cut equals fill on a hill”. 
 

As we pursue more advanced calculus topics later in the coursework, we can interface with the 
content on a deeper level because of the students’ heightened understanding of the logical 
underpinnings of the mathematics. As we return to the formal epsilon-N definition of limit for 
sequences, visualization of the sequence convergence can deepen understanding, in addition to 
more naïve understanding from computation of sequence values on a CAS or calculator. Then we 
can actually prove some simple limits using the formal definition, with much deeper student 
understanding than when they tried similar proofs for function limits at the beginning of calculus. 
Finally, we can help the students appreciate that limit is the building block of calculus through 
some of the theorems we prove, such as proving that alternating series converge conditionally.   
 

 
Figure 7: A particular N for a given ∈. 

 
The study of theorem within more advanced topics, such as improper integrals and infinite series, 
will develop more advanced reasoning skills as well. Whether investigated as part of improper 
integrals or infinite series, the Comparison Test Theorem is a powerful tool for developing 
students’ reasoning capabilities. The theorem infers convergence or divergence via an inequality 
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relating the unknown integral (series) to a known one. The idea of using an inequality to infer 
information about an unknown item should remind students of the Squeeze (Sandwich) Theorem 
for limits. In addition, the students are reminded of the necessity of validating the hypothesis that 
the sequence terms are nonnegative first, as they learned continuity was essential in the study of 
the Intermediate Value Theorem.  
 
What makes the Comparison Test Theorem difficult is that many comparisons are inconclusive. 
Of four possible inequality situations (e.g., known less than converging, known greater than 
converging, etc), only two are conclusive. For example in Figure 8 below, when summing the 
(connected) red sequence “B” of terms of the form 10/(2+√n), we find it diverges by comparison 
to the sum of eventually smaller terms 10/n (this is the black sequence “C”). However, 
comparison fails in Figure 9, when you select the more obvious sequence of terms 10/√n (Blue 
“D”). This is a serious disappointment to our students. Many prefer the Limit Comparison Test, 
which compares the limit of the ratios of the terms (functions), and remedies most inconclusive 
situations. I try not to introduce this theorem too early, since it reduces the work to process, rather 
than inference and conclusions from evidence. This is similar to the problem with the evaluation 
of definite integrals via the Fundamental Theorem, replacing the theory with a process. Similarly, 
the Ratio and Root Tests for series are useful tools, but don’t require such an exercise of reasoned 
inferences. However, proving the Ratio Test in class via a comparison with a geometric series is 
very sophisticated. At this point in the course, we can further strengthen appreciation for theorem 
and proof by showing the students some of these more complicated, delicate proofs. A proof of a 
theorem such as the Ratio Test involves elegant reasoning and several steps, not just a direct 
inference from a definition.  

 
 
 

Figure 8: The Comparison Test for series is conclusive. 

 
 

Figure 9: The Comparison Test for series is inconclusive 
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The theorem on the Test for Divergence of a series (when terms don’t approach zero, a series 
cannot converge) is particularly troublesome for students. Their difficulty is twofold: it is proved 
(or used, if you like) in contraposition, and the fact that series with small terms may NOT 
converge is very counterintuitive. The contrapositive demonstrates that sometimes an avenue to 
proof is not how the theorem is useful later. Students’ incorrect intuition is based on faulty 
reasoning, an expectation that infinite sums obey all laws that apply to finite sums (such as 
grouping terms two at a time, in the sum 1 – 1 + 1 – 1 + 1 …). This presents an excellent 
opportunity to deepen student understanding of the concepts of infinity and indeterminate forms. 
 
To complete an investigation of power series, we arrive at the theorem which states that if a 
(suitably differentiable) function has a power series centered at a particular a, then it is in fact the 
Taylor series centered at a. The theorem emphasizes that mathematics procedures require 
validation, we don’t use processes without first proving that the process yields meaningful results. 
A nice way to assess whether the student has understood this validation process is to tell them a 
function has a converging power series, say of the form 3 + 4x – x2/7 + … and then ask for some 
information about the values of the function and its first two derivatives at 0. We can readily 
assess student understanding of the big picture by asking them to quickly find a series for a given 
polynomial. Finally, the calculus of the fundamental theorem is reunited in the idea that 
transcendental and rational functions can be represented by “polynomials” (of infinite degree) and 
differentiated and integrated accordingly.   
 
Whether the student takes only one calculus course or several, the Fundamental Theorem of 
Calculus is significant to him/her only after developing the understanding of the logic and 
mathematics underlying the theorem. Deeper theorems of subsequent courses rely on those 
underpinnings. Through the study of various theorems in calculus we can achieve the goals of 
mathematical learning: development of reasoning and communication skills, understanding of 
rigor, and the ability to implement problem solving strategies. Through theorem we can offer a 
peek into the world of advanced mathematics, its format and rigor, while achieving those goals.  
 
References 
 
Apostol, Tom, Calculus, Vol 1 2nd ed, Blaisdell Publishing, 1967. 
 
Kutzler, Bernard, “DERIVE: The future of teaching mathematics”, The International Journal of 
Computer Algebra in Mathematics Education (formerly The International DERIVE Journal), Vol 
1 No. 1 (1994), pp 37-48. 
 
Larson, Ron et al, Calculus of a Single Variable, (early transcendental functions volume), 3rd ed, 
Houghton Mifflin Company, 2003. 
 
Ostebee, Arnold, and Paul Zorn, Calculus: from Graphical, Numerical, and Symbolic Points of 
View, Vol 1 2nd ed, Brooks/Cole Publishers, 2002. 
 
Rich, Al and Stoutemyer, David (1998), Derive for Windows, V. 4.11 through 6.0. Available 
through Texas Instruments at www.ti.com. 
 
Stewart, James, Calculus: Concepts and Contexts, 2nd ed, Brooks/Cole Publishers, 2001. 
 
Thomas, George et al, Thomas’ Calculus, (early transcendentals volume), updated 10th ed, 
Addison Wesley, 2003. 



10 

 

Biographical Note 

Lisa Townsley is professor of mathematics at Benedictine University in Illinois, USA. Her 
research interests include group cohomology and technology enhancement of mathematics 
instruction, using the software MAGMA for the former and DERIVE and graphics calculators for 
the latter.  

 


	toabstr: 


