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Abstract: The foundation for this paper consists of (a) a study carried out in three 

graphing calculators based Precalculus classes and (b) authors’ teaching experiences in technology-
oriented environments. The study considered two intertwined aspects. The first aspect dealt with 
enabling students to build a stronger conceptual understanding of functions and related concepts 
and the second was to study what conditions provide for a successful learning environment utilizing 
graphing calculators. The key factors identified and applied were: long-term exposure to ill-
structured problems; writing about the concepts; the teacher answering questions with appropriate 
questions/prompts to provide for scaffolding; cooperative learning; and the teacher’s proficiency 
with graphing calculator. The students developed a deeper understanding of the concepts and they 
were more willing to attempt complex problems. Their communication skills improved. The study 
indicates that problem-based learning in a technology oriented environment provides appropriate 
conditions for developing critical thinking and communication skills. Authors are using this study 
as a springboard to elaborate further on the TI-based learning environments and emerging 
calculator-related issues; preconceptions and misconceptions; and indispensable and dispensable 
mathematical abilities and skills related to the concepts studied.  

 
 
Introduction 

 
Authors’ deliberations in this paper are based on the study that was conducted by the first author 

during her graduate work and under supervision of the second author. The aim of the study was to 
investigate two intertwined learning goals.  The first one was enabling students to build a strong 
conceptual understanding of functions and related concepts and the second was to study what conditions 
provide for a successful learning environment utilizing graphing calculators. Some results of this study 
have already been reported in Thiel & Alagic (2004).  

The goal of this paper is to elaborate on the aspects of the technology used and conditions that 
had to be changed to accommodate the learning environment for appropriate use of graphing calculators. 
Furthermore, authors are looking at students’ preconceptions and misconceptions and how to address 
them, as well as searching for dispensable and indispensable mathematical concepts in the environment 
centered around graphing calculators. For that purpose this paper is “unbalanced” in the following way: 
The Study section describes the research only as much as it is necessary to introduce the reader to the 
context of authors’ source of information and reflections. It comprises defining the problem, literature 
review and design of the study. Findings part of the paper is elaborating on Students’ achievement, 
Students’ understanding, Teacher’s understanding, Preconceptions and misconceptions, and Indispensable 
and dispensable mathematical concepts. The appendix includes four labs used by students during this 
study. 
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The Study 
 

Defining the Problem 
 

In the current NCTM 2000 Principles and Standards for School Mathematics (NCTM, 2000), the 
learning principle states: “Students must learn mathematics with understanding, actively building new 
knowledge from experience and prior knowledge” (p. 20). Understanding is the key. The basic goal of 
education is to prepare students to be life long learners and to function effectively in the world. In order 
for this to occur, students must understand the mathematics that they are taught. Based on research of how 
people learn (Cobb, 1994; Bransford, Brown & Cocking, 2000), a learner acquires knowledge by 
construction of new knowledge from old, rather than knowledge transmission and the recording of 
information conveyed by others. Students must “author their own knowledge, by revising and creating 
new understandings out of existing ones” (Applefield, Huber, & Moallem, 2001, p. 3). 

Year after year, there are still students who enter the mathematics classroom not remembering the 
basic concepts that were “taught” to them previous year. It seems that for some students the mathematics 
classroom is a day after day endless sequence of facts and procedures that make little sense. It is no 
wonder that the next year, students do not remember what they have learned, they have made no 
connections. So in an effort to “cover the material” that is in the syllabus we drill and practice and then 
the next year, do the same thing. Not only have many students forgotten most of the facts and procedures, 
but also they seem unable to apply many of the learned procedures to new problem situations. The 
transfer of knowledge does not occur. This is directly related to their lack of conceptual understanding of 
the mathematical ideas (Bransford et al., 2000). 

The authors experiences confirm what research has found. Students could “do” lots of 
mathematics, but many of them did not seem able to make the transfer of knowledge from one situation to 
another. It was the introduction of the graphing calculator, in the early 1990’s, and it’s capacity to provide 
students with multiple representations of the problem that caused the first author to seek opportunities to 
learn about this tool and how it could impact her teaching of mathematics.  

Students develop new knowledge through an active process, not through passive reception of 
information. For learners to construct meaning they must view each new experience in light of what they 
already know about the topic. Students’ current knowledge base provides the initial context for creating 
new understanding. They must have opportunities to engage in activities that allow them to interpret new 
information and create new understandings based on their previous knowledge base. No matter the 
sophistication of the learner, their pre-existing knowledge base will have a powerful influence on what is 
learned and how previous concepts change (Applefield et al., 2001).  

Three guiding questions formed the basis of this study. How will students develop conceptual 
understanding of functions and function-related concepts in a problem-based learning environment that 
requires significant utilization of graphing?  In what way might this approach result in a student-centered 
approach to problem solving?   And lastly what decisions will the teacher need to make during the course 
of the research to accomplish the teacher’s year-long learning goals?   

 
Literature Review 

 
The purpose of this study is to focus on problem-based learning a) facilitated by cooperative 

group activities and b) utilizing multiple representations including technology based ones, and how these 
issues impact students’ attitude and achievement. Therefore topics such as problem-based learning, 
technology, cooperative learning and naturalistic research paradigm were the basis of this literature 
review. Two studies, on problem-based learning, revealed positive outcomes when students were engaged 
in solving ill-structured problems. In a study on cooperative learning opportunities, improvement in 
student understanding of concepts was also documented. Studies involving the use of software and the 
graphing calculator to create learning environments that promote student understanding had positive 
results. 
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Problem-Based Learning. Research by Mergendoller, Maxwell and Bellisimo (2000), in a pilot study, 
compared Problem-Based Learning (PBL) to traditional instruction in an economics classroom. Three 
teachers who had attended a week-long training workshop taught one hundred eighty-six students in nine 
classes. Two of the nine classes were comparison classes and were taught using traditional 
lecture/discussion approach. The treatment classes were given ill-structured problems and were allowed 
to explore, research, and cooperatively discuss solutions to the problem. As students worked on the 
problem, they discovered that understanding economics concepts was essential to framing and solving the 
problem. The data suggested weak empirical confirmation that PBL classes spark student interest in the 
subject studied and teach students to learn from their mistakes. This was a pilot study and the researchers 
admit that a larger population and more rigorous testing methods need to be used. 

Gallagher, Stepien and Rosenthan (1992) studied the effects of problem-based learning on 
problem solving with students in a 3-year state-supported residential school for students talented in 
mathematics and science. Eighty-seven junior and senior students were in the experimental group and 
forty-four students were in the control group. Intervention consisted of three process-oriented goals: (a) to 
lead students to discover the interdisciplinary character of most “real world” problems, (b) to require 
students to engage in the process of solving an ill-structured problem, and (c) to improve students’ 
problem-solving skills. Analysis of the data on pre and post-test ill-structured problems indicated that 
students who had been given the intervention treatment improved in their problem solving abilities. 
Students in the control group did not have the same level of improvement even though all students in this 
school had been introduced informally to problem-solving strategies. Engagement in solving ill-structured 
real-world problems seemed to provide the difference in student learning. 
 
Cooperative Learning. Whicker, Bol and Nunnery (1997) investigated the effects of cooperative 
learning on student achievement and attitudes in two precalculus classrooms. The 31 participants attended 
a rural, lower-middle class school in the mid-South. Before the beginning of the treatment phase, students 
in the cooperative group class were instructed in the rules for small-groups. They were instructed to 
explain their answers to each other and to direct questions to their teammates rather than the teacher. 
Students were told that they were not finished with their task until they were certain that all members of 
the group could score 100% on the test. The classroom procedure for the treatment group was teaching 
the lessons, group study, testing, and team recognition. The teacher presented the material to both the 
treatment group and the comparison group in 5 to 8 days, depending on the length of the chapter. The 
students in the treatment group then spent the next two class periods studying the teacher-developed 
review sheets that included the correct answers, while students in the comparison group used their two 
days to individually study the review sheets. After the two-day study sessions, all students took individual 
tests on the chapter material. Students in the experimental group scored higher on the tests than students 
in the comparison groups. The differences in the scores increased throughout the study, leading 
researchers to conclude that it takes some time for the benefits of cooperative learning to become 
apparent. There were decreases in test scores for both groups, but the decline in scores for the comparison 
group was greater than the decline in scores for the experimental group. The researchers attribute these 
declines to the fact that the material studied was advanced in nature and was increasingly difficult 
throughout the 6 weeks. Students in the experimental group favorably evaluated the cooperative learning 
procedure. They liked receiving help from others and working with other students. The only negative side 
to their responses was the sameness of the group as they were not reassigned during the 6-week study.  
 
Technology. Confrey, Piliero, Rizzuti, and Smith (1990), supported by grants from Apple Classrooms of 
Tomorrow, conducted a study based on constructivist framework. The goal of the project was to create a 
learning environment that promoted student instruction of mathematical concepts through repeated cycles 
of developing a problem, working to solve the problem and reflecting on the solution to the problem. A 
class of 22 students in their fourth year of mathematics participated in this study. The teacher of the class 
had sixteen years of experience and described her teaching as traditional. Teacher development during 
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this project included a week of intensive preparation during the summer and continued support during the 
school year. Research findings indicated that students of average and above abilities were able to use the 
available software to construct strong conceptualizations of linear and exponential functions. The 
teacher’s role in this developmental process was shown to be as strong as the role of the software. In this 
project, the teacher was also a learner. Not only did her view of mathematics change during the course of 
the research, but her willingness to devote more instruction time to problem solving activities and 
student-initiated activities increased. By allowing students to acknowledge alternative ways of 
approaching and solving problems and sharing those insights, the teacher felt that her students had 
developed great understanding of the mathematics and had taken on greater responsibilities for their own 
learning. Conclusions drawn from this study included the following: (a) sustainable changes in 
classrooms requires a systematic, but incremental approach; (b) the teacher is a critical participant in the 
process; (c) institutional changes such as longer classroom periods and partnership among teachers are 
necessary; (d) students need support throughout the change process; and (e) methods for assisting 
students in working effectively in groups must be developed and supported with forms of assessment that 
promote student’s own evaluation of their work.  

Smith and Shotsberger (1997) considered the effect of integrating the graphing calculator into a 
semester-long college algebra course. The project focused on the extent to which student achievement, 
attitude, and problem-solving methods were effected by the use of the graphing calculator. A total of 114 
students in four classes were involved in the study. Two teachers participated, each teaching a calculator 
and a non-calculator based class. All four classes used the same non-calculator based textbook. The 
teachers were provided with training in calculator usage. The results of the study indicated that students 
utilizing the calculator scored consistently higher on the achievement tests (62.9%) than did the non-
calculator sections (59.6%). Females had significantly higher scores in both the calculator and non-
calculator classes. Pre and post measures of student attitudes were collected using a researcher-developed 
questionnaire related to feelings about learning mathematics, doing mathematics and valuing 
mathematics. Using these measures the post measure of attitude of calculator students was slightly higher 
than that of non-calculator students. In an additional survey, students asked questions concerning out-of-
class usage responded that they considered the calculator to be integral to their course work. Use of the 
graphing calculator had a positive impact on the achievement and attitude of these students. 
 
Naturalistic Paradigm. Three research principles guide a naturalistic research study. The first principle 
recognizes that multiple viewpoints of an event are essential in order to understand the learner’s existing 
base of knowledge. Connecting theory verification to theory generation is the second principle of 
naturalistic research. The third principle pays special attention to studying cognitive activity in context. 
One way to address this principle is to study the learning process in the natural setting in which it occurs 
without intervention (Moschkovich & Brenner, 2000).  

Moschkovich (1996, 1998) integrated a naturalistic paradigm into her study to explore students’ 
conceptions of linear functions and to examine how these conceptions change. Two ninth-grade algebra 
classes were studied. Students were observed working in groups or with a teacher during two curricular 
units. Classroom observations as well as videotaped student conversations, and written assessments were 
utilized to determine the students understanding of linear functions. The study reflected a difference both 
in design and analysis from quantitative studies. The cycle of data collection began by observing students 
at the beginning of the unit in a natural setting, the classroom, making conjectures based on these 
observations, and then addressing these conjectures directly in the design of the learning process. 
Conjectures based on observations were corroborated through the analysis of written and videotaped data. 
A central objective of the study was to consider multiple points of view, especially the points of view of 
the students. The goal was to describe how the students approached the connection between lines and 
equations. As the study progressed, two perspectives were maintained; the researcher’s perspective, with 
formal mathematics training, and the students’ perspective, as they reflected and conversed with each 
other. 
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Design of the Study (Thiel & Alagic, 2004) 
 

Three precalculus classes in an independent college-preparatory urban mid-western school were 
involved in this study. A total of 49 students participated in the semester-long project. Students in this 
school are required to take 4 units of mathematics consisting of Algebra I, Algebra II, Geometry, and one 
other course to meet graduation requirements. The fourth course could be Precalculus or Advanced 
Placement Statistics. Approximately 50% of the student body complete more mathematics than is 
required and take some level of calculus before graduation. Consequently about 50% of any senior class 
is enrolled in Precalculus or Statistics. The study was done in three Precalculus classrooms, grades 10, 11 
and 12. 

The teacher/researcher in this study had participated in extensive training incorporating the 
graphing calculator into the classroom. Three summer sessions at a Precalculus-Calculus Lead-Teacher 
Training at the North Carolina School of Science and Mathematics provided the teacher with experience 
in problem-based learning utilizing the graphing calculator. The teacher has been integrating the graphing 
calculator into the classroom as a tool for discovery and to answer the “what if” questions since her first 
professional development with graphing calculators. The teacher believes that when students experience a 
“learning diet” rich in explorations and discoveries, followed by making connections with the 
mathematical concepts behind it, students are better able to develop strong conceptual understandings. 
Allowing the students to discover a mathematical concept, in an appropriate context, rather than just 
telling them about the concept, enables students to make better connections with their prior knowledge, 
and therefore, between new and existing concepts. 

The use of the graphing calculator was an integral part of every activity and every student had 
his/her own TI-83 graphing calculator. The teacher also had an overhead calculator and a viewscreen for 
projecting onto the board. Students were already experienced with the use of the calculator as it is a 
required tool in the Algebra I and Algebra II classroom. They were knowledgeable in using lists, tables, 
function evaluation, and the graphing features of the calculator. 

The naturalistic approach to research as well as rules of good teaching required that the teacher 
first have a grasp of what the students did understand. In order to assess this, two pre-test situations were 
employed. Students were asked to describe four key mathematical concepts in as rich a language as 
possible. Those concepts were function, domain, range and inverse. These descriptions provided base-line 
data on which of the multiple representations students used as well as which of the concepts students 
understood. The second pretest was an ill-structured problem involving concepts that will be used at later 
time. Naturalistic research necessitates the consideration of a wide variety of viewpoints of any one 
particular event or concept understanding. Toward that goal a variety of assessment tools were used. At 
the end of the first quarter and at the end of the semester, students wrote about the concepts that they have 
been studying. Pairs of students also volunteered to be recorded as they conversed about the concepts. 
Rich documentation for each student, including tests, labs, group problems and written work, was kept in 
the form of a portfolio. 

During the semester two ill-structured problems were presented to the students The solution to a 
problem was due one week following the test on the material in the corresponding chapter. As the 
material in a unit was taught, students gained more insight into possible solutions of the problem, but it 
was never “taught” in the classroom. A rubric for grading the ill-structured problems was given each 
group when the problem was assigned. For each problem, students could request additional information, 
but only if they could justify to the teacher the relevance of the information to a line of inquiry. For the 
second problem, students were given twenty-minute time segments about twice each week to work on 
their problem solutions. This was a better working arrangement for the students. During each in-class 
work session, one member of the group was to record, in a spiral notebook, what the group did that day, 
what worked, what didn’t work and where they were headed. Approximately once every two weeks, the 
teacher read the student notes and made comments or suggestions. 

During the time spent on either chapter, a variety of methods were utilized to help students 
“construct” their own knowledge. Data gathering labs, exploration labs and less complicated ill-structured 
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problems were done in cooperative groups, where both group work and individual work were required of 
the students.  

As another means of assessing student progress toward conceptual understanding, four pairs of 
students were taped as they held discussions. These taping sessions took place after the first quarter and at 
the end of the semester. Students volunteered to have their conversations recorded. It was assumed that 
the students who volunteered for the first quarter recording session felt fairly confident in themselves.  

One of the critical issues in the constructivism paradigm is that students construct their new 
understandings of a concept from their prior understanding of that concept. Pre-assessment would let the 
teacher know which concepts were clearly understood by the students and which concepts were unclear or 
not understood at all. For each of the four major concepts: function, domain, range, and inverse, students 
were assessed on a scale of zero to five for each method of representation, zero being the lowest score. 
Each entry represents the average total score (out of 20) that the students earned in each concept. Total 
scores are a summation of the four methods of representation (verbal, analytical, numerical and 
graphical). 

 
 Female 

10 
Male 

10 
Female 

11 
Male 

11 
Female 

12 
Male 

12 
Function 1.0 2.2 1.0 1.7 0.8 2.8 
Domain 0.5 1.0 0.7 1.5 0.8 0.8 
Range 0.5 1.4 0.9 1.1 0.9 1.0 
Inverse 0.5 1.2 0.9 1.4 1.0 1.0 

Table 1: Pre-Assessment Averages (Thiel & Alagic, 2004) 

The pre-assessment situations provided insight and confirmed the researcher’s feelings that even 
though these students had had three years of high school mathematics, few if any of them could give a 
meaningful definition of a function, describe the concepts of domain and range, or had any idea what the 
inverse of a function meant. Though it was suggested that students use multiple representations, many had 
no idea what that meant. Student response to this pre-assessment was less than positive, as many of them 
left definitions blank. 

At the end of the quarter and semester, students again wrote definitions of the four key concepts 
in as rich a means as possible, using multiple representations.  The results of the end-of-semester 
assessment are below.   As before, for each of the four major concepts, function, domain, range, and 
inverse, students were assessed on a scale of zero to five for each method of representation, zero being the 
lowest score. Each entry represents the average total score (out of 20) that the students earned in each 
concept. Total scores are a summation of the four methods of representation (verbal, analytical, numerical 
and graphical). 

 
 Female 

10 
Male 

10 
Female 

11 
Male 

11 
Female 

12 
Male 

12 
Function 20.0 18.6 17.8 17.5 16.6 16.5 
Domain 16.0 17.6 15.8 16.4 14.0 14.3 
Range 16.0 16.6 14.9 15.4 14.2 13.8 
Inverse 17.5 17.6 17.3 16.7 15.2 13.5 

 
Table 2: End-of-Semester Averages (Thiel & Alagic, 2004) 

 
Taped conversations between pairs of students again occurred at the end of the semester. The 

teacher wrote down equations and sketched any graphs that either student used. In this way the transcripts 
of the conversations could more accurately reflect what actually occurred. These conversations were a 
vast improvement from those at the quarter. The pair of students discussing functions was able to include 
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in their discussions all the following types of representations: verbal, analytical, graphical and tabular. 
The discussion of domain and range was also richer than previously recorded. This pair of students used 
analytical, graphical and table methods as well as verbal information to describe these concepts. The most 
improvement could be seen in the discussion of inverses. These students seemed to have a reasonably 
clear understanding of the graphical look of an inverse as well as the rotation about the y = x line. There 
was some confusion in how to write inverse notation, but even that was corrected during the discussion.  

 
 

Findings 
 
The ongoing discovery of increasingly efficient technology-based tools and their increasing use in 

schools lends support to the view that a paradigm shift in teaching and learning mathematics is taking 
place. For many teachers, understandings of these ideas are grounded in the ways they learned them 
during their formal education. They are aware of these changes and many of them are involved in the 
processes of these changes in their schools. The research on use of technology reveals the challenges that 
the blending of technology and teaching/learning mathematics pose. And, it is ultimately the mathematics 
teachers, not the technological tools that continue to be the key to the success of the mathematical 
learning environment (e.g., Garofalo, Drier, Harper, Timmerman, & Shockey, 2000; Kaput, 1992; 
NCTM, 2000, Alagic, 2003). 

In this context, the purpose of the research reported here was to study two related aspects of the 
learning process; the broadening of students’ conceptual understanding of certain concepts, and the 
teacher’s insight into the development of those conceptual understandings. Both aspects were studied 
while utilizing problem-based learning, cooperative group structures and graphing calculators. The key 
factors identified as relevant and applied during this study were: long-term exposure to ill-structured 
problems, writing about the concepts, the teacher answering questions with appropriate questions/prompts 
to provide for scaffolding, cooperative learning; and the teacher’s proficiency with graphing calculator. 
The students developed a deeper understanding of the concepts and they were more willing to attempt 
complex problems. Their communication skills improved. The study indicated that problem-based 
learning in a technology-oriented environment provides appropriate conditions for developing critical 
thinking and communication skills (Thiel & Alagic, 2004).  

 
Students 
 
Students’ Achievement. At the middle of the semester the teacher/researcher was disappointed in the 
overall student averages. Student understanding of functions was beginning to take shape, but many 
misconceptions were still apparent. The concepts of domain and range were less developed, though 
students had some understanding of the issues at hand. The concept of inverses was completely 
misunderstood. The students had made no real connections with the concept of inverse in their previous 
course. What they did connect with was the elementary idea of the inverse/reciprocal of a number and so 
assumed that the inverse of a function would be the same as the inverse of a number, one divided by the 
function. They made connections, just not the correct ones. Although significant improvement had 
occurred at this time, the teacher was very concerned at this point in time because the class was 
approximately two full weeks behind where the class had been in previous years (Thiel & Alagic, 2004).  

The taped conversations at the end of the semester indicated that some of the previous 
misconceptions about the four key concepts had been cleared up. It is important to remember that the 
students volunteering for this task probably had a great deal of confidence in their understanding and they 
knew what kinds of questions were going to be asked of them. In the conversation about functions, the 
pair of students utilized verbal, analytical, graphical and tables as a means of describing the concept. They 
also pointed out examples graphically and using tables which were not functions. The conversation about 
domain and range did include all four methods of description, but a misconception about the domain and 
range of a table of values continued to surface as it had at mid-semester. The conversation about inverses 
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also contained all four methods of description. Here a misconception about how to write an inverse was 
cleared up in the discussion process. 

The teacher/ researcher had some concern that utilizing problem-based learning would result in 
not being able to “cover” necessary material during the school year. However during the 2nd semester, 
without a conscious effort on the teacher’s part, the Precalculus classes were no longer behind. As the 
year concluded, it was noted that the concepts covered by the students were almost identical to those that 
had been covered the past 5 years. As the teacher reflected on how the class made up those two weeks, it 
became apparent that throughout the 2nd semester, the many word problems that we studied did not take 
as much in-class time for the students as had been necessary in previous years (Thiel & Alagic, 2004). 

 
The following table (Table 3.) shows the progress made during one semester. 
 
 Female 

10 
Male 

10 
Female 

11 
Male 

11 
Female 

12 
Male 

12 
Function 95.0% 82.0% 84.0% 79.0% 79.0% 68.5% 
Domain 77.5% 83.0% 75.5% 74.5% 66.0% 67.5% 
Range 77.5% 76.0% 70.0% 71.5% 66.5% 64.0% 
Inverse 85.0% 77.0% 82.0% 76.5% 71.0% 62.5% 

Table 3. Percent Gain from Pre-Assessment to End-of-Semester 
 
Students’ Understanding. By the conclusion of this study most of the students had made significant 
gains in their ability to discuss the concepts of function, domain, range and inverse and in their ability to 
solve complex problems. It should be emphasized that the students’ exposure to these concepts was never 
in isolation. The real-life problem scenarios, labs and exploration activities provided the contextual 
settings to aide students in their understanding. The use of ill-structured problems to facilitate problem-
based learning and to examine multiple representations of a problem situation was validated. Graphing 
calculators provided a rich exploration environment because students were able to make a conjecture and 
then determine, using graphs or tables whether or not that conjecture was true.  

During the second semester an indication of the students improved problem-solving skills or 
perhaps their improved self-confidence occurred. The event took place early in the 2nd semester when 
another ill-structured problem had been given to the students as a group assignment. The problem was to 
take at least two days for the students to complete. The teacher noted that as the groups in the first hour 
class worked on the problem almost no students asked the teacher questions.  This seemed odd, as past 
experience had shown that this particular problem was difficult and that different groups usually asked 
many questions. Through the remainder of that days’ precalculus classes the same phenomena continued 
to occur, few, if any questions were asked by the students. At the end of the day, one student remained 
after last hour class to talk with the teacher. He indicated that he did not believe that this problem was as 
difficult as the problems had been first semester. As soon as he had spoken those words, there was a look 
of understanding in his eyes, and he said, “This one isn’t so hard because of all those other problems we 
did before”. This unsolicited student comment was at least a sign that students had more confidence in 
their abilities to try on their own before rushing to ask questions. 

 
Teacher-Researcher  
 

Studying the learning process from the teacher’s perspective and determining just how conceptual 
understandings are developed was a more difficult undertaking. From this study it appears that there were 
several key factors in this development: 
i. The gains made in the last quarter lead the teacher to conclude that students must be exposed to not 

only a variety of activities, but that exposure must be continued over a longer period of time than just 
a few weeks.  
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ii. When students are “forced/guided” to write about concepts and/or to discuss a problem, the outcome 
(individual connections that they make) is much greater than when they just listen to the teacher and 
take notes. The teacher has repeatedly witnessed this when asking students individually to explain a 
concept or problem solving technique. As the words flow from the student’s mouth, they catch their 
own mistakes and reassess what they are saying. They make new connections.  

iii. The process of grading the explanations within 2 days of the submission was very time consuming, 
but it proved extremely worthwhile. The teacher was able to understand what misconceptions the 
students were developing and come up with an activity that could help them refocused.  

iv. Teaching which enhances students’ understanding takes willingness on the teacher’s part to ask more 
questions, but be less willing to give the direct answers. Teachers must more often answer a question 
with another question/prompt or have ready a problem or a (calculator) example that would enable 
students to develop their own understanding.  

v. The graphing calculator played an integral role in this research project. It was used in most every lab 
and exploration activity, and certainly was necessary for the solution of the ill-structured problems. 
The manner in which the graphing calculator is used continues to be a challenge for teachers. The 
teacher has to find new ways to ask questions and new ways to test student understanding. It is an 
invaluable tool when used in the correct manner. The teacher must understand and therefore teach 
students how the calculator is providing information. For example, the concept of domain and range 
are blurred if students explore the function 1( )

2
f x

x
=

−
 in a standard window. In this window, on 

the TI-83+, it appears that the domain is all real numbers, and the range –11.75<y<7.833. Changing 
to a “friendly window” or exploring the values of the function in table form, could more likely lead a 
student to discovering the actual domain and range for this function.  

 
Study Results: Positive Effects and Challenges 
 

The following seemed to be the positive effects of this study: 
1. Students constructed viable understandings of key concepts. 
2. Students were able to formulate and solve ill-structured problems.  
3. In the long run, the number of concepts discussed, during the school year, neither increased nor 

decreased from previous years. 
4. Students’ confidence in their ability to solve difficult problems improved. 

 
The following are recognized challenges. 

1. Amount of time required by the teacher to grade written descriptions and ill-structured problems. This 
problem, perhaps, could be solved by utilizing a self-grading system as reported in a study by Ulmer 
(2001), Self-Grading for Formative Assessment in Problem-Based Learning. 

2. Difficulty in finding challenging problems that are doable. 
3. The logistics of long-term ill-structured problem solving in the classroom. 
 

Teaching with Graphing Calculators: Further Deliberations 
 
Preconceptions and Misconceptions 
 

Concepts specific to this study: 
• Even though students drew graphs, they were all linear or quadratic. 
• They wrote function definitions, but all the definitions were in an f(x) form, as though an equation 

had to be in that form for it to be a function. 
• They discussed the toolkit of functions, but made no mention of the functions used in the ill-

structured problem.  
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• One of the most glaring was their belief that every line was a function.  
• Discussions of domain and range were limited. For example, one major misunderstanding occurred 

when the students examined a table that describe a function relationship. Some students thought the 
domain and range was merely the difference between the highest and lowest x and y values, 
completely disregarding the fact that the tables were made of a discrete set of values.  

• The conversation about inverses was similar to those individual statements made by the students on 
the individual assessment sheets.  

• Students indicated that an inverse was a reciprocal of the function. 
 General Calculator Misconceptions/ Errors: 

• What you see on the display screen is not always accurate.  Students need to be made aware of the 
fallacy of believing everything that they see on the calculator screen. 

• The graph of the function 
2 1( )

1
xh x
x

−
=

−
 appears to be the line with a domain and range of all real 

numbers when graphed in a standard window.  When graphed with a  ZDecimal, one is able to see 
the “hole” in the graph and relate that “hole” to the domain and range restrictions of the function. 

• Be aware of behavior hidden from view.  A particular graph or relationship may not show up on the 
screen because the student has not considered the appropriate domain and range of the relationship. 

• Students must understand the number of significant digits present in the internal workings of the 
calculator. 

They are likely to believe that the function 
3( )

1
g x

x
=

−
  will eventually take on a function value of 

0, because they have traced either right or left on the graph screen and see a zero produced on the 
screen as the function value. 

 
The “big” questions behind this study could also be: Having made a decision about the best curriculum 
(course of study) for students, how can the graphing calculator enhance that study, thus affecting the 
instruction strategies chosen? How is students' learning affected in a graphing calculators based learning 
environment? How should testing and other forms of assessment be modified?  
 
Emerging Calculator Issues 
 

• We must keep redefining the basic skills that are expected of mathematics students 
• Calculator proficiency and an understanding of it’s workings are necessary for the teacher to guide 

students in their learning 
• We can expect students to solve more complex problems applicable to real-world situations since 

calculators can help with algebraic manipulations (Demana & Waits 1990) 
• Student’s must have use of a graphing calculator at home and school 
• With graphing calculators we can exploit the power of visualization (Shultz, 1991) 
• The focus of instruction is changing from mathematical/algebraic manipulation to the understanding 

mathematics as languages that allow for modeling problems. This is a manifestation of the changing 
role of mathematics teaching and learning 

• Students using graphing calculators become good problem solvers and gain a deeper understanding 
of algebraic concepts and procedures (Demana & Waits, 1990) 

• Dick (1992) adds his findings of technology's affect on students' skills. Teachers can concentrate on 
the problem-solving process. Students can gain access to mathematics beyond their level of 
computational skills Technology can be used to explore, develop, and reinforce concepts including 
estimation, computation approximation, and number properties. Students can experiment with 
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mathematical ideas and discover patterns. Tedious computations that arise when working with real 
data in problem-solving situations become doable with technology.  Teachers must cover the 
necessary basic skills to understand the mathematics being used with the calculator. 

• Demana and Waits (1990), "Technology empowers students to solve difficult problems."(p. 27) 
• Calculators stimulate interest, understanding, and the desire to solve complex problems and find 

exact answers (Embse & Engebretsen, 1996) 
• Stick (1997) did a study with two calculus classes, one with calculators the other without 

calculators. He concluded that students taught with calculators were more interested and were able 
to see calculus as applied in the world. Further, he found that exploring a graphical representation 
first, helped students transition to analytic methods much easier 

• "The extensive use of the graphics calculator as a tool for learning and doing mathematics helps 
students whose limited computational abilities previously prevented them from advancing in the 
study of important mathematics" (Coxford & Hirsch, 1996, p. 25) 

• Harvey (1992) categorizes tests into three parts: (a) technology-inactive - where no opportunity to 
use the technology exists; (b) technology-neutral - problems easily solved without technology, and 
(c) technology-active - use of technology is essential or greatly assists the completion of the 
problem. 

 
Indispensable and dispensable concepts and skills 
 

• Proficient use of the calculator is now an indispensable skill for all students.  These skills should be 
taught as needed, not in isolation.  Graphical and numerical solution should, where possible, be 
encouraged. 

• Graphing calculator removes the constraints with which teachers and textbooks relied on artificial 
nice examples and exercises; approximate answers are more realistic in real-world situations (Dick, 
1992) 

• Students need to understand factoring and be proficient in general factoring techniques.  They no 
longer need to spend days factoring difficult polynomials. 

• The time spent on proving difficult trigonometric identities can be reduced.   
• Students need to be exposed to a wider variety of functions; piecewise, higher degreed polynomials, 

trigonometric functions, inverse trigonometric functions, logarithms and exponentials, as well as the 
composition of functions. 

• Emphasis should be on understanding, not just doing the same kind of problems as were practiced in 
homework. (Ex:  Students practice the concept of transformation of functions.  In an assessment 
situation one can give a domain and range for a function and ask how a particular transformation 
affects the domain and/or range.) 

• Exponential growth/decay should involve a wide variety of real-world problems with “not nice” 
solutions.  
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Appendix 

 
Cassette Tape Problem (Thiel & Alagic, 2004) 
 

A new company is producing a cassette tape of a popular group and wishes to determine the selling price 
that would result in maximum profit for the company. The data below represents the number of people who would 
be willing to pay a particular maximum cost for the tape. We collected this data from a class survey. 

 
Data Collection: 

 Maximum   Price of 
Tape   

Number Willing to 
Pay this Price 

$ 0.00   
$ 5.00   
$ 6.95   
$ 7.45   
$ 7.95   
$ 8.25   
$ 8.75   
$ 9.00   
$ 9.25   
$ 9.50   
$10.00   
$10.50   
$11.00   
$12.00   
$13.00   
$13.50   
$14.00   
$15.00   
$16.00   

 
Some questions you may want to consider. 
1. How many people would really be willing to pay $12.00 or $10.50 for a tape? 
2. How would you represent a relationship between the price of a tape and the number of tapes sold? 
3. How is profit determined? Cost? Income? 
 
During the next several weeks your group will design and carry out a plan to answer the above question. 

While some time in class will be devoted to working on this project, your group will need to plan on out-of-class 
time also. The presentation of your groups’ solution will be in the form of a Study Works document. Accompanying 
this document will be supporting work as indicated in the rubric for this problem 
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Bungee Egg-Drop Lab 
 
Introduction: In many industrial, engineering, and business applications it is sometimes necessary to 

develop a mathematical model to predict how a system, structure, economy, etc. will perform. This mathematical 
model is based on a set of sample data that has been collected. The model that is developed is then used to predict 
behavior in new situations. In this activity your group will need to come up with a mathematical model (an equation) 
to describe the amount of stretch there is in a bungee cord or varying length. You will be provided with a participant 
(egg) and harness (netting), bungee cord ( several rubber bands), and meter stick. Your goal is to develop a model 
that can be used to predict the number of rubber bands needed to provide a “safe jump” from a height to be 
determined later in the class. Of course, part of the three of bungee jumping is to see how close the participant can 
come to the ground without actually contacting the ground. 

 
I. Collect your data and develop your model here. Show all data and work that goes into your development. 
II. Explain the meaning of the slope and y-intercept of your model in terms of the bungee jumping problem. Do the 

paper clip and the netting have anything to do with either of these values? 
III. Testing your model. Height your group draws: ___________ 

 
Calculations used to determine the number of rubber bands required 

 
IV. Evaluation: Scoring will be as follows for Successful Jumps: 
 100 The “jump” is within 5 centimeters of the ground. 
  95 The “jump” is 5.1 to 10 centimeters from the ground. 
  90 The “jump” is 10.1 to 20 centimeters from the ground. 
     85 The “jump” is 20.1 to 30 centimeters from the ground. 
  80  The “jump” is 30.1 to 40 centimeters from the ground. 
  75 The “jump is more than 40 centimeters from the ground. 
  ** The “jump that is closest to the ground will receive an extra 10 points. 
 
Scoring for Not-So-Successful Jumps: 
  85 A minor impact is made with the ground. (Small crack or can hear it touch.) 

 75 Impact with the ground would result in a fairly large crack or egg shattering. 
  
Transformation Lab 
 
Sketch the following pairs of functions on the same graph. Answer the questions following each group of graphs. 
Use a window of [-5,5] and [-5,5]. Your calculator should be in radian mode. 
 
Investigation 1: 
 
a) 2( )f x x=    b) ( )f x x=    c) ( ) cos( )f x x=  

  ( ) ( ) 3g x f x= +     ( ) ( ) 4g x f x= −       ( ) ( ) 2g x f x= +  
 
Write a general statement explaining how the graph of ( )f x  differs from the graph of ( )g x , where 

( ) ( ) , 0g x f x c c= ± > . 
 
Investigation 2: 
a) ( )f x x=       b) ( )f x x=    c) 3( )f x x=  

  ( ) ( 3)g x f x= +     ( ) ( 5.5)g x f x= −     ( ) ( 2)g x f x= +  
 
Write a general statement explaining how the graph of ( )f x  differs from the graph of ( )g x , where 

( ) ( ), 0g x f x c c= ± > . 
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Investigation 3: 
a) ( ) int( )f x x=    b) ( ) cos( )f x x=   c) ( )f x x=  
  ( ) .5 ( )g x f x=      ( ) 3 ( )g x f x=   ( ) 2 ( )g x f x=  
   
 
Write a general statement explaining how the graph of ( )f x  differs from the graph of ( )g x , where 

( ) ( ), 0g x cf x c= > . Be sure to give a complete explanation. 
 
Investigation 4: 
a) 2( )f x x=    b) ( ) int( )f x x=    c) ( ) sin( )f x x=  
 ( ) (3 )g x f x=     ( ) (.5 )g x f x=      ( ) (2 )g x f x=  
 
 
Write a general statement explaining how the graph of ( )f x  differs from the graph of ( )g x , where 

( ) ( ), 0g x f cx c= > . Be sure to give a complete explanation. 
 
Investigation 5: 
a) 2( )f x x=    b) ( )f x x=     c) ( ) cos( )f x x=  

  ( ) ( )g x f x= −     ( ) ( )g x f x= −        ( ) ( )g x f x= −  
 
Write a general statement explaining how the graph of ( )f x  differs from the graph of ( )g x , where 

( ) ( )g x f x= − . 
 
Investigation 6: 
 
Rewrite each function as a multiple transformation of its related toolkit function using the same notation as above. 
Explain the transformations that took place. Graph each function to check your answer. 
 
a) ( ) 5 7g x x= − +     b) 2( ) ( 1) 3g x x= + −  
 
c) ( ) 3sin(2 )g x x=     c) ( ) 3 4g x x= − −  
 
Volume Lab 
 
You are given a piece of cardboard 20” by 32”. With the cardboard you are to make the largest possible box by 
cutting congruent squares out of each corner and folding up the sides. See diagram to the right. 
 
1. Write a function V(x) (in factored form) which would represent the volume of the box.  
2. What does x represent? What does V(x) represent?  
3. Use the graphing capabilities of your calculator to sketch V(x). Include in your sketch all important 

characteristics including intercepts. 
4. V(x) is a cubic function and therefore all real numbers are algebraically legitimate inputs and outputs. V(x), 

however, models a physical phenomena where they may be limitations on the domain and range of the function. 
Determine the apparent domain and range for the physical phenomena modeled by V(x). 
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