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Abstract    A new approach of the Combinatorial Matrix Approach for 
eliminating several variables simultaneously on symbolic polynomial systems is 
presented. It is proved that in the case of the polynomial systems with bi-variable in 
two degrees or with bi-variable in three degrees it is more efficient than other 
methods such as the Wu’s Elimination and the Gröbner Bases Approach even the 
Dixon approach. 
We know that, in computer algebra, to efficiently eliminate the variables in a 
symbolic polynomial system is very crucial to a computer algorithm and a software 
to solve the realistic problems. For example, in machine proving and in computer 
automated reasoning, there are a bunch of symbolic polynomial systems in which the 
variables needed to be eliminated. Some of the problems are difficult to be solved 
with the existed eliminating methods such as Wu’s elimination and the Gröbner 
Bases Approach. 
The Combinatorial Matrix Approach focuses on how to derive a linear symbolic 
system from a nonlinear polynomial system. Then solve the equivalent linear system 
instead of the nonlinear system. Several examples are given to show the efficiency of 
the method. Comparisons among the various methods are also made here.  
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1. Introduction 
In the real world, many problems can be described by algebraic polynomial equations. Especially, in the 
geometry area, many geometrical problems are corresponding to some polynomial equation systems. 
Take the Apollonius problem as an example. The Apollonius problem says: Given three circles in the 
plane, find or construct a circle tangent to all three (it will be discussed later). It is said that a 
biochemistry research problem of computing the medical axis of the space around a molecule is related 
to the Apollonius problem [1,2]. Besides, in many geometrical theorems involving incidence, 
congruence, distance and parallel relations, the conditions and the conclusions are also expressed as 
algebraic equations respectively [3]. Among those equation systems, there are many polynomial 
equation systems with symbolic coefficients. To find of the solution for the equation systems is the key 
to solving the problems. There exist many different techniques to solve a polynomial equation system 
or eliminate variables from the polynomial equation system. The earlier and more popular way to get 
the information from the equation system is to use the resultant computations. The most famous 



 

resultant to determine the common solution for two polynomial equations with one variable is the 
Sylvester resultant, which was implemented in the software Maple. By computing the Sylvester 
resultant successively, one can solve a multi-variable polynomial equation system by eliminating 
variables one at a time. But the successive eliminating method is very inefficient. Another alternative 
method is the Characteristic set method [4], which implements the Wu’s elimination method to get a set 
of triangular lists of the multi-variable polynomial equation systems. Though the method is perfect in 
theory, in practice it doesn’t seem to work well since it eliminates variables one at a time and must deal 
with the branch situations. So does the Gröbner bases method. The break through work was done by D. 
Kapur, T. Saxena and L. Yang. They proposed a method called Dixon resultant method, with which one 
can eliminate several variable simultaneously. Besides, the method is fully automatic and needs no 
human intervention. With it the time complexity can be reduced dramatically [5]. The Dixion resultant 
method can be applied to a system with n+1 generic n-degree polynomials [5] in n variables. It gives 
the resultant of n+1 generic n-degree polynomials. For arbitrary set of n+1 non-homogeneous 
polynomials with n variables, it gives a necessary condition for the existence of a common affine zero. 
Many intractable geometric and algebraic problems which once were difficult to be solved by the 
Characteristic set method and the Gröbner bases method were attacked by the Dixon resultant method. 
However, since the Dixon resultant method produces the derived set of polynomials automatically, the 
derived polynomials usually have higher degree. And sometimes the Dixon resultant vanishes 
identically without giving any information.  
To improve the Dixon resultant method, this paper presents a new approach for extracting information 
from a given polynomial system, which is called the Combinatorial Matrix Approach. The 
Combinatorial Matrix method tries to get independent polynomials by constructing the polynomial 
combinations from the given system. Then it constructs a combination matrix, which is formed by the 
coefficients of the original polynomials and the derived polynomials. The determinant of the 
combination matrix is called a combination resultant. The vanishing of the combination resultant is the 
necessary condition for the existence of a common zero for the given polynomial system. There are 
several advantages of the Combinatorial Matrix Approach. First, the combinatorial matrix method can 
also eliminate several variables simultaneously. Second, the combinatorial matrix method can reduce 
the total degree of the coefficients of the determinant of the combinatorial matrix pertaining to the 
coefficients of the original polynomials. The reducing of the degree of the coefficients of the 
combinatorial resultant can contribute to the decreasing of the time complexity. Third, the combinatorial 
matrix method has more freedom to produce the independent polynomials, which allows one to get the 
polynomials with lower degrees. Furthermore, the time complexity is reduced and the efficiency to 
eliminate variables is increased.  
In section 2 of this paper, we will review the Dixon resultant method. Then in section 3 we will 
introduce the combinatorial matrix approach by solving a polynomial system with 3 generic 2-degree 
polynomials in 2 variables and 3 generic 3-degree polynomials in 2 variables. We will give several 
examples by using the Combinatorial Matrix approach in section 4. Finally, the several methods will be 
compared in section 5.     
     
     
      



 

2. Review of Dixon resultant method 

At first we recall a well known fact that for a given polynomial system P={ p 1 , p 2 ,…, p n }, if another 
polynomial system Q={ q 1 , q 2 ,…, q s } is derived from the system P, then the zero set of P is included 
in the zero set of the derived system Q. That means 
                         Zero(P) ⊆  Zero(Q).                                   (2.1) 
Then instead of finding the zero set of the polynomial system P directly from P, we turn to find the 
solutions from the zero set of the system Q by sifting the spurious factors ( Gather-and-sift [6]). 
Let                                                     be the set of n+1 generic n-degree 
polynomials in n variables and d i = max( degree(p j , x i ) | j= 1,2,…,n+1) for i=1,2,…,n. Define the 
polynomial                          as the following determinant: 
      
      

                                                                  ,       (2.2) 

     
      

where nααα ,...,, 21 are new variables. Obviously, each of x i =α i  is a zero of ∆ , i=1,2,…,n. So we 

can remove the factor Π n
i 1= ( x i -α i ) from the ∆  to get a polynomial: 

       δ (x 1 , x 2 ,…x n ,α 1 ,α 2 ,…,α n ) =                                       (2.3) 

      
The polynomial δ  is called the Dixon polynomial, which is of degree ((n+1-i)×d i )-1 in iα  and 
(i×d i )-1 in x for i=1,2,…,n. If x 1 =c 1 , x 2 =c 2 ,…, x n =c n  is a common zero of the system P, it 
makes the Dixon polynomial vanish, no matter what the value α 1  , α 2 ,…α n . That means that all 
the coefficients of the various power products ofα 1 ,α 2 ,…,α n  in δ (x 1 ,x 2 ,…,x n ,α 1 ,α 2 ,…,α n ) 
vanish. If regard the polynomial δ   as the polynomial of the power products of α 1 ,α 2 ,…,α n , 
one can find that there are just                   =           = s coefficients, which correspond 
to s equations called Dixon Derived System:     

Γ : {                      }.                      (2.4)  
The variables in all of those equations are power products of x 1 , x 2 ,…, x n . And there are exact 

Π n
i 1= i× d i =n!Π n

i 1=  d i = s 
power products of x 1 , x 2 ,…,x n . So there are just s equations and s variables inΓ . If let D be the s× s 
coefficients matrix of Γ and, v 1 = 1, v 2 = x 2 ,v 3 =x 1 x 2 ,…,v s =Π n

i 1= x 1−× idi
i , then  

                     Γ :  D (         ) tr = (0, 0, …, 0) tr .                       (2.5) 
If P has a common zero (say                        ), so does the Γ , then the det(D) vanishes. 
Therefore det(D)=0 is the necessary condition on the coefficients of             for them have a 
common zero. The matrix D and its determinant det(D) are called Dixon Matrix and Dixon resultant. 
If the Dixon matrix D is singular, [5] suggested that we can take one D’s maximum sub-matrix, say R, 
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to get the necessary condition for existing the common zero for polynomial system P.    
The following example shows how to solve geometric problem by using of Dixon resultant method. 
Example  ( Apollonius problem ) Given three circles on the plane, find other circles tangent to all 
three. Suppose the equations for three circles are as follows: 
  C 1 : (x−a 1 ) 2 +(y−b 1 ) 2 = r 2

1 , C 2 : (x−a 2 ) 2 +(y−b 2 ) 2 = r 2
2 , C 3 : (x−a 3 ) 2 +(y−b 3 ) 2 = r 2

3 . 
Let C denote the solution circle with center (x, y) and radius r. If two circles is tangent to each other, the 
distance between their centers is equal to the algebraic sum of their radii. Then the solution circle must 
satisfy the following equations:  

 
(2.6) 

 
Theoretically, there are eight cases of the solution corresponding to the eight kinds of choices of the 
signs on the right side of the equations. Among eight cases just one case that three circles are outside 
the solution circle (take all signs positive).  
Step 1  Construct the Dixon polynomial:  
                   p 1 (α , y) ≡(α − a 1 ) 2 +(y− b 1 ) 2 − (r + r 1 ) 2 , 
                   p 2 (α , y) ≡ (α − a 2 ) 2 +(y− b 2 ) 2 −(r + r 2 ) 2 , 
                   p 3 (α , y) ≡ (α − a 3 ) 2 +(y− b 3 ) 2 −(r + r 3 ) 2 ,                       (2.7) 
                   p 1 (α , β ) ≡(α − a 1 ) 2 +( β − b 1 ) 2 − (r + r 1 ) 2 , 

                p 2 (α , β ) ≡ (α − a 2 ) 2 +( β − b 2 ) 2 −(r + r 2 ) 2 , 
                   p 3 (α , β ) ≡ (α − a 3 ) 2 +( β − b 3 ) 2 −(r + r 3 ) 2 .  
Step 2  Construct the Dixon polynomial as follows: 

 δ ( x, y,α , β )  =                                                         (2.8) 

     
Theoretically, here d 1 =d 2 =2 and s=2!* d 1 *d 2 =8. The Dixon matrix D is 8×8 matrix. However the 
rank of the Dixon matrix is 3. So det(D)=0 identically. Fortunately, the Dixon matrix has a 3×3 
non-singular sub-matrix. The calculating result shows that the Dixon polynomial just has three terms: 
            δ ( x, y,α , β )  =  c 1 (x ,y)α + c 2 (x ,y) β + c 3 (x, y),                     (2.9) 
where  
c 1 (x ,y)=( 4*b2*a3-4*b3*a2+4*a1*b3-4*a1*b2-4*b1*a3+4*b1*a2)*x+(2*b1*b3^2-2*b1*r3^2-2*b1*a
2^2+2*b3*b2^2+2*b1^2*b2+2*r1^2*b3+2*b1*a3^2+2*a1^2*b2-2*a1^2*b3-2*b3*r2^2-2*b2*a3^2-2
*r1^2*b2-2*b1*b2^2-2*b1^2*b3-2*b2*b3^2+2*b2*r3^2+2*b3*a2^2+2*b1*r2^2-4*b3*r2*r+4*b1*r2
*r-4*b1*r3*r+4*b2*r3*r+4*r1*r*b3-4*r1*r*b2); 
c 2 (x ,y)=( 4*b2*a3-4*b3*a2+4*a1*b3-4*a1*b2-4*b1*a3+4*b1*a2)*y+(2*a2*b3^2+2*a1*r3^2-2*b2^
2*a3+2*a2*a3^2+2*a1*b2^2+2*r1^2*a2-4*a2*r3*r+2*b1^2*a3+4*a1*r3*r-2*a2^2*a3-2*r1^2*a3-2*
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a1*a3^2+4*r2*r*a3-2*a2*r3^2+4*r1*r*a2-4*a1*r2*r-4*r1*r*a3+2*a1*a2^2-2*a1*b3^2+2*a1^2*a3-2
*a1*r2^2-2*a1^2*a2-2*b1^2*a2+2*r2^2*a3); 
c 3 (x ,y)=(2*b1*b3^2-2*b1*r3^2-2*b1*a2^2+2*b3*b2^2+2*b1^2*b2+2*r1^2*b3+2*b1*a3^2+2*a1^2
*b2-2*a1^2*b3-2*b3*r2^2-2*b2*a3^2-2*r1^2*b2-2*b1*b2^2-2*b1^2*b3-2*b2*b3^2+2*b2*r3^2+2*b
3*a2^2+2*b1*r2^2-4*b3*r2*r+4*b1*r2*r-4*b1*r3*r+4*b2*r3*r+4*r1*r*b3-4*r1*r*b2)*x+(2*a2*b3^
2+2*a1*r3^2-2*b2^2*a3+2*a2*a3^2+2*a1*b2^2+2*r1^2*a2-4*a2*r3*r+2*b1^2*a3+4*a1*r3*r-2*a2^
2*a3-2*r1^2*a3-2*a1*a3^2+4*r2*r*a3-2*a2*r3^2+4*r1*r*a2-4*a1*r2*r-4*r1*r*a3+2*a1*a2^2-2*a1*
b3^2+2*a1^2*a3-2*a1*r2^2-2*a1^2*a2-2*b1^2*a2+2*r2^2*a3)*y+(-8*b1*a3*r2*r+8*b1*a2*r3*r-4*
b1*a2*b3^2-4*b1*a2*a3^2-4*a1*b2*r^2+4*a1*b2*a3^2+4*a1*b2*b3^2-4*a1*b3*b2^2+4*a1*b3*r^2
+4*a1*b3*r2^2-8*a1*b2*r3*r+8*a1*b3*r2*r-4*r1^2*a2*b3+4*r1^2*a3*b2+4*b1^2*a2*b3-4*b1^2*a
3*b2+4*r^2*a3*b2+8*r1*r*a3*b2+4*a1^2*a2*b3-4*a1^2*a3*b2-4*a1*b3*a2^2+4*b1*a3*a2^2+4*b
1*a3*b2^2-4*b1*a3*r^2-4*b1*a3*r2^2+4*b1*a2*r^2+4*b1*a2*r3^2-8*r1*r*a2*b3-4*a1*b2*r3^2-4*
r^2*a2*b3). 
Step 3  Calculate the Dixon resultant det(D) or it’s sub-resultant of the sub-matrix of D with maximal 
rank (If D is Singular, Without lose of the generality , again denote the sub-resultant by det(D)).     
The Dixon resultant det(D) has 2022 terms which is the function of the radius r of the solution circle. 
The vanishing of the det(D) is the necessary condition for the solution.  
Step 4  Find the necessary condition for the solution.  
By solving the equation det(D)=0, we got the constrain to the radius r. In the expression of the radius r, 
there are total 5697 terms (omitted here).  
Step 5  Get the solution 
Substituting the solution of the radius r to the equations c1(x,y)=0 , c 2 (x,y)=0 and c 3 (x,y)=0 above, we 
can finally get the coordinate of the center of the solution circle.  
A special example is given hare. Given three circles as follows: 

C 1 : (x−0) 2 +(y−0) 2 = 1,  C 2 : (x−0) 2 +(y−5) 2 = 9,  C 3 : (x−5) 2 +(y−0) 2 = 4.           (2.10) 
Substituting the coordinates and radii into the expressions from (1.5) to (1.8) we can get the 
corresponding Dixon polynomial: 
             δ ( x, y, α , β )=(-220+20*r+100*x)α + (-170+40*r+100*y) β +  
                           (100+100*r^2+200*r)+(-220+20*r)x +(-170+40*r)y. 
Hence, the Dixon derived system is  
                f 1  (x,y)= 100*x-220+20*r 
                f 2  (x,y)= 100*y-170+40*r                                        (2.11) 
                f 3  (x,y)= (-220+20*r)*x +(-170+40*r)*y+(100+100*r^2+200*r). 
So, the necessary condition for the linear equation system has non-zero solution is that the determinant 
of the coefficient matrix vanishes, which gives constrain to the radius r. By calculating, we get that 
                r = 1.27874,  x= 1.944252,  y=1.188504. 
The rest seven cases can be solved similarly.  



 

3. The Combinatorial Matrix Approach 
From the review of the Dixon resultant method above, we found that if the Dixon matrix becomes 
singular the Dixon resultant det(D) vanishes identically and gives us no further information. We have to 
find a non-singular sub-resultant by means of other techniques. On the other hand, the degree of the 
coefficients in Dixon resultant pertaining to the coefficients of the original polynomials is (n+1) n! 
Π n

i 1=  d i , where n is the quantity of the variable and d i  is the maximal degree of the variable x i  
among the n+1 polynomials ( i =1,2,…, n). The following sections will present the Combinatorial 
Matrix approach with which one can decrease the coefficient degree in calculating the so-called 
Combinatorial Resultant for the derived polynomial system. The Combinatorial Matrix approach tries 
to find several mutual independent derived polynomials that have equal or less degree pertaining to the 
given polynomials by using of the combination method. After adding them to the original polynomial 
system, they form an independent square like polynomial system. Then we can get the necessary 
condition for the derived polynomial system has common zero. The necessary condition is that the 
determinant of the coefficient matrix vanishes.   
We first consider the following three generic 2-degree symbolic coefficient polynomial equations in two 
variables: 
 

PS:                                                                (3.1) 
 
Our objective is to find the necessary condition for the existence of a common zero for the given 
polynomial system (3.1) by means of the so called Combinatorial Matrix Approach.  

Let         denote the monomial which is in the i th  polynomial and j th  term in (3.1) ( i=1,2,3; 

j=1,2,…,6). And let             =∑ =

t

s ji s
p

1 , be the polynomial formed by picking up the 

monomials p
1ij (x, y), p

2ij
(x, y),…, p

tij (x, y), where i=1,2,3 and j t ∈(1,2,…,6). We separate the 

polynomial p i (x, y) into three parts F i (j 1 ,j 2 ,…,j t ), F i (k 1 ,k 2 ,…,k l ) and F i (v 1 ,v 2 ,…,v e ) such that  

p i (x, y)= F i (j 1 ,j 2 ,…,j t ) + F i (k 1 ,k 2 ,…,k l ) + F i (v 1 ,v 2 ,…,v e ), where j’s, k’s and v’s are different , 

i=1,2,3 and t+l+e=6. We then construct a determinant with polynomial entries as follows: 

      
                                                         .          (3.2) 

      
    Where L 1 = [j 1 ,j 2 ,…,j t ], L 2 = [k 1 ,k 2 ,…,k l ] and L 3 =[v 1 ,v 2 ,…,v e ]. The P(L 1 , L 2 , L 3 ) 
represents any one of the combinations. For example, 
    

P([1,2],[5],[3,4,6]) =                         =                                 . 
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It is obvious that if there is a common zero for the polynomial system (3.1), then it must be zero of the 
polynomial (3.2), since 

    
  

    
    
             =  
                                                      . 
    
Let l i = iL , i=1,2,3. Define the type of the polynomial P(L 1 , L 2 , L 3 ) as follows: 
Definition 3.1  A polynomial             is called type          if it has the form of (3.2) and  

=     , i=1,2,3.  
Then there are 15 different type t(1, 1, 4) polynomials, 60 different type t(1, 2, 3) polynomials and 90 
different type t(2, 2, 2) polynomials. So there are total 165 different combinations. But the type t(1, 1, 4) 
polynomials turn out to be the constant coefficient combination of the original polynomials, which 
could not provide any useful information. We skip them here. For the type t(1, 2, 3) polynomials we can 
chose three of them as follows: 
   
P([1],[2,3],[4,5,6]) =                                =                             , 
   
   
P([6],[3,5],[1,2,4]) =                                = xy                              , 
   
   
   

P([3],[1,2],[4,5,6]) =                                = 2xy                              . 

   

Let        ,        and         denote the determinant on the right hand above respectively. And 
let ),,( kjiτ denote the coefficient determinant corresponding to i th , j th and k th columns of the 
coefficient matrix in (2.1) (i≠ j≠ k). Then p 4 (x, y), p 5 (x, y) and p 6 (x, y) can be written as follows 

                                                                      ,   
                                                                      ,   (3.3) 

                                                                           . 
If we consider the polynomials       (i=1,2,…,6) as the linear function of the power products of  

(denote it as {v 1 , v 2 ,…,v 6 }), then the system 
              DS:       {        = 0;  i=1,2,…,6 }                            (3.4) 
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forms a homogeneous linear equation system pertaining to the variables v 1 , v 2 ,…,v 6 . 
Let C M denote the following matrix: 
  
  
  
C M =                                                                        (3.5) 
  
  
  
  
 With Maple V, after 5.3 second calculation it is shown that det(CM) is non-vanish and has 21894 terms. 

Then the equations in the system { p i (x, y) =0; i=1,2,…,6} are independent.  

Definition 3.2  The full rank matrix CM is called a Combinatorial Matrix, the determinant det(CM) is 
called a Combinatorial resultant and the linear system { p i (x, y) =0; i=1,2,…,6} is called a derived 
equation system for the polynomial system (3.1).  
Since the common zeros of the polynomial system (3.1) is also the zeros of the derived polynomial 
system (3.4), then the zero set of the derived polynomial system (3.4) include all zeros of the system 
(3.1). That means 
                            Zero(PS) ⊆  Zero(DS).                              (3.6) 
On the other hand, the necessary condition for the derived polynomial system (3.4) has non-trivial 
solution is that the determinant of the coefficient matrix CM vanishes. Therefore we have following 
theorem: 
Theorem 3.1  Suppose PS is a polynomial equation system of three generic 2-degree equations in two 
variables. Then the necessary condition for the existence of a common zero for the polynomial system 
PS is that the determinant of the combinatorial matrix vanishes. 

The combinatorial matrix is not unique. The matrix (3.5) is just one of them. One can constructs any 
independent derived polynomial system. The key is that we must construct some derived polynomials 
with lower degree. Usually they must be less or equal to the degree of the given polynomials after 
eliminating some power products.  
Comparing with other method, we tried Maple V wsolve({p 1 , p 2 , p 3 },[a 1 ,x, y],{}) and the 
Characteristic set method csolve({p 1 , p 2 , p 3 },[x,y]), but the computer shown that “Error: object too 
large”. With the Gröbner bases method, the gsolve({p 1 , p 2 , p 3 }) shown no useful information. By 
successive Sylvester method, it also shown that “Error: object too large”. Even with Dixon resultant 
method, while calculate the Dixon resultant the computer shown “Error, (in minor) object too large”. 
Only with the Combinatorial method, after 5.3 second calculation it shown that det(CM) is non-vanish 
and has 21894 terms. The reason is that, with the system (3.1), the degree of the coefficients in the 
resultant pertaining to the coefficients of original polynomials is 4×8=32 for the Wu’s and Sylvester’s 
methods, 3×8=24 for the Dixon resultant method but just 3×3+3=12 for the Combinatorial matrix 
method! This is the reason why Combinatorial matrix method faster than others. It is also true for the 
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case of a system with three generic 3-degree symbolic coefficient polynomial equations in two 
variables. 
We now consider a system with three generic 3-degree symbolic coefficient polynomial equations in 
two variables then construct its combinatorial matrix and resultant. 
Given a general polynomial equation system with three 3-degree symbolic coefficient polynomials in 
two variables as follows: 

p 1 (x, y) ≡ a 1 x 3 + a 2 x 2 y + a 3 xy 2 + a 4 y 3  + a 5 x 2 + a 6 xy + a 7 y 2 + a 8 x + a 9 y + a 10  
PS:  p 2 (x, y) ≡ b 1 x 3 + b 2 x 2 y + b 3 xy 2 + b 4 y 3  + b 5 x 2 + b 6 xy + b 7 y 2 + b 8 x + b 9 y + b 10    (3.7) 

p 3 (x, y) ≡ c 1 x 3 + c 2 x 2 y + c 3 xy 2 + c 4 y 3  + c 5 x 2  + c 6 xy + c 7 y 2 + c 8 x + c 9 y + c 10  
Our goal is to find the condition that the system (3.7) has common zero. To this end, again we first 
construct some derived polynomials such that by adding the original polynomials together, the 
coefficient matrix of the homogenous equation system forms a squared and full rank matrix. But for the 
system (3.7), the constructing technique is little different. Some derived polynomials are formed by two 
or three combinatorial matrices. This is we can not construct enough derived polynomials just by use of 
single matrix. In this case, the number of the power products will increase. The criterion is to find a 
square like homogenous equation system, in which the coefficient matrix is non-singular. Here is one 
set of polynomials we found that satisfies the criterion.    

        p 4 (x, y) ≡ 22
1
yx

P([1,2,5],[4,7],[3,6,8,9,10]) + 22
1
yx

P([1,2,5,6,8],[3],[4,7,9,10]),  

        p 5 (x, y) ≡ xy
1 P([1,2,3,5,6,8],[4,7,9],[10]),  

        p 6 (x, y) ≡ 2
1

xy
P([1,2,3,5,6,8],[4,7],[9,10]), 

        p 7 (x, y) ≡ 3
1

xy
P([1,2,3,5,6,8],[4],[7,9,10]), 

        p 8 (x, y) ≡ 32
1
yx

P([1,2,5],[4],[3,6,7,8,9,10]), 

        p 9 (x, y) ≡ 23
1
yx

P([1],[4,7],[2,3,5,6,8,9,10]) + 23
1
yx

P([1,2,5],[3],[4,6,7,8,9,10]),  

        p10 (x, y) ≡
yx4

1 P([1],[3,6],[2,4,5,7,8,9,10]) + 23
1
yx

P([1,2,5],[3],[4,6,7,8,9,10]),  

        p11 (x, y) ≡
yx2

1 P([1,2,5],[4,7,9],[3,6,8,10]) +
yx2

1 P([1,2,5,8],[3,6],[4,7,9,10]),  

        p12 (x, y) ≡
yx3

1 P([1],[4,7,9],[2,3,5,6,8,10]) +
yx3

1 P([1,3,5,6,8],[2],[4,7,9,10])  

                   + 
yx3

1 P([1,2,5],[3,6],[4,7,8,9,10]),  

        p 13 (x, y) ≡ 23
1
yx

P([1,2],[3],[4,5,6,7,8,9,10]).  

These polynomials all are the linear combination of the 13 power products { y 4 , xy 3 , x 2 y 2 , x 3 , x 2 y, 



 

xy 2 , y 3 , x 2 , xy , y 2 , x, y , 1}. Then  

                  DS:   { p i (x, y) =0;  i=1,2,…,13 }                             (3.8) 

forms a order 13 homogenous equation system. We denote the coefficient matrix as CM.  
To see if the matrix CM is full rank, we use Maple V to calculate the rank of the order 13 matrix with 
symbolic entries. Unfortunately, after calculating 700 seconds, the computer shows “Error, (in expand / 
big proud) Object too Large”. This is because the degree of the coefficients pertaining to the 
coefficients in the original polynomials is 3×10 +3=33. Though it is reduced from 54 with successive 
Sylvester resultant method or Characteristic set method to 33, it is still intractable for Maple V. So we 
have to try another method to determine if it is full rank. Evaluate special values to the parameters in 
the coefficient matrix of the system (3.7) as follows: 

{a 1 , -3, 1, 4, 1, 19, 7, 13, 17, 5 }, 

{9, b 2 , 23, 1, 27, 47, 43, 5, 31, 1}, 

{5, 53, c 3 , 1, 13, 3, 11, 33, 29, 7 }. 
After substitute the parameters in (3.8) with the values above, we got a special case of the coefficient 
matrix CM, denote it as matrix C. If rank(C)=13, then we can assert that the matrix CM is also full rank.  
After calculating rank(C) for 188 seconds, the computer shows that the rank(C)=13. So, the matrix CM 
is a full rank matrix. Then we have  
Theorem 3.2  Suppose PS is a polynomial equation system of three generic 3-degree equations in two 
variables. Then the necessary condition for the existence of a common zero for the polynomial system 
PS is that the determinant of the combinatorial matrix vanishes. 
   
From the constructing of the derived system DS, we know that the derived polynomial system is not 
unique. One can constructs different equivalent derived system. The less the dimension of the 
combinatorial matrix is, the better. The heuristic algorithm of the combinatorial matrix for three generic 
3-degree equations in two variables can be summarized as follows:      
   
Algorithm CombMatrx  

Input :       PS, a polynomial set; X, the power product set in PS; CX, the cofactor sequence.  
Output:      DS, the combinatorial derived polynomial set. 

Initiaizationl:  PS={p 1 , p 2 , p 3 }, DS= PS, X={ x 3 , x 2 y, xy 2 , y 3 , x 2 , xy , y 2 , x, y , 1}, CX={ xy , 

x 2 y , xy 2 , x 3 y , x 2 y 2 , xy 3 , x 4 y , x 3 y 2 , x 2 y 3 , xy 4 , x 5 y , x 4 y 2 , x 3 y 3 , x 2 y 4 , xy 5  }. 

Step 1: Construct a polynomial p 4 by combinatorial matrix method with PS, such that after 

eliminating the cofactor CX(1)= xy,  p 4 has lower as possible degree of power product and 

{p 1 , p 2 , p 3 , p 4 } is independent. Denote power product set as Y 4 . Let X= XU Y 4  and 

DS= DSU { p 4 }. Let l(DS) denote the number of polynomials in DS, l(X) denote the 

number of the power products in X. If l(DS) = l(X) then go to Step 4, otherwise do Step 2.  
Step 2:  For i =5 do the following loop: 

While (l(DS) ≠  l(X)) do 



 

        Construct a polynomial p i by combinatorial matrix method with PS, such that after 

eliminating the cofactor CX(i),  p i has lower as possible degree of power product and 

DSU {p i } is independent. Denote power product set as Y i . 

 If Y i ⊆X then DS =DSU {p i }. If l(DS) = l(X) then go to Step 4, otherwise i=i+1 and go 

on Step 2. If Y i ⊄X, go to Step 3.  
        If we have exhausted CX and still have l(DS)<l(X), then the combinatorial matrix is 

singular and go to Step 4. 

Step 3:  Denote the new power products in Y i  by {e 1 , e 2 ,…, e s }. Assume that the coefficients 

corresponding to e 1 , e 2 ,…, e s  in p i  are τ 1 (i 1 , j 1 , k 1 ), τ 2 (i 2 , j 2 , k 2 ) ,…, τ s (i s , 

j s , k s ). Let l 1 =       , l 2 =       , l 3 =       . Then construct a polynomial 

determinant from { p 1 , p 2 , p 3 } such that the first column includes the columns with 

column index in l 1 , the second column includes the columns with column index in l 3  

and the third column includes the columns with column index in l 2 . Finally the cofactor 

must be CX(i). After eliminating the cofactor CX(i), denote the result polynomial by q i . 

From the construction of the polynomial q i , we know that the coefficients corresponding 

to the e 1 , e 2 ,…, e s  in q i are -τ 1 (i 1 , j 1 , k 1 ), -τ 2 (i 2 , j 2 , k 2 ) ,…, -τ s (i s , j s , k s ). So 

the polynomial p i + q i must eliminate the terms corresponding to the power products e 1 , 

e 2 ,…, e s . 

        If the set of power products of the polynomial (p i + q i ) ⊆  X and the polynomial (p i + 

q i ) is independent to DS, then DS = DS U  {p i + q i }. If l(DS) = l(X) then go to Step 4, 

otherwise i=i+1 and go on Step 2.  

        If the set of power products of the polynomial (p i + q i ) ⊄  X, then go back to Step 3 to 

eliminate new power products. The process will be end after several iterations. If the sum 

polynomial obtained this way is independent to DS, then it can be added to DS. If l(DS) = 

l(X) then go to Step 4, otherwise i=i+1 and go on Step 2.  

Step 4:  Output DS, terminate the process. ▌ 

Here we show some steps of the CM algorithm.  

For the cofactor CX(1)=xy , construct a polynomial determinant  

P([1,2,3,5,6,8],[4,7,9],[10]) 
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p 4 =                                                       , 

   

     Y 4 ={ x 3 , x 2 y, xy 2 , y 3 , x 2 , xy , y 2 , x, y , 1}∪ {xy 3 ,x 2 y 2 , y 4 }  

       = { xy 3 ,x 2 y 2 , y 4 , x 3 , x 2 y, xy 2 , y 3 , x 2 , xy , y 2 , x, y , 1}. 

     DS =PSU { p 4 }={ p 1 , p 2 , p 3 , p 4 }.  

Then for the cofactor CX(2)=x 2 y , construct a polynomial determinant P([1,2,5],[4,7,9],[3,6,8,10]) 

  

      = 

   

   

=( x 2 y) 

   

      =( x 2 y) p 5 . 

Since there are new power products { xy 5 , xy 4 , x 2 y 3 , x 2 y 4 } in p 5 , we should construct another 

polynomial determinant to eliminate them. To this end, we first consider the coefficients 

corresponding to new power products { xy 5 , xy 4 , x 2 y 3 , x 2 y 4 } in p 5 . They are τ 1 (2, 4, 3), 

(τ 2 (5, 4, 3), τ 3 (2, 4, 6), τ 4 (2, 7, 3)), (τ 5 (1, 4, 6), τ 6 (1, 7, 3)),τ 7 (1, 4, 3). In this case 

l 1 ={1,2,5}, l 2 ={4,7}, l 3 ={3,6}. Then construct a 3×3 polynomial determinant such that its first 

column includes the terms with column index 1,2 and 5 , the second column includes in the terms 

with column index 3 and 6, the third column includes the terms with column index 4 and 7 of the 

original system (3.7) as follows: 

    

  

  
  
           = ( x 2 y) 
  
  

           = ( x 2 y) q 5 . 

Obviously, the polynomial p '
5 =(p 5 + q 5 ) will eliminate the terms with the power products xy 5 , xy 4 , 

x 2 y 3 , x 2 y 4 . The calculation also shows that p '
5  is independent to { p 1 , p 2 , p 3 , p 4 }. Therefore,  

DS = DS U { p '
5 }={ p 1 , p 2 , p 3 , p 4 , p '

5 }.  

In this way, the process can be carried on until a square shape independent combinatorial matrix is 
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found.  
We now show that the Dixon derived system (2.4) can be obtained by the Combinatorial Matrix Method. 
Transpose the determinant (2.2) and do some column permutations we can get an equivalent polynomial 
determinant below: 
   
   
  
  
  
  

For the determinant above, beginning from left to right, let every column subtract right hand column. 

Then after eliminating factor Π n
i 1= ( x i -α i ) we can get an equivalent polynomial determinant: 

  

  

                                                                              (3.9) 
  
  

  

For any ),...,,,,...,,( 21121 njnjnjnij xxxq +−+−+−ααα (i=1,2,…,n+1; j=1,2,…,n), we can regard them as 

the polynomials of the power products of nααα ,...,, 21 . For a fixed index j, it is not difficult to find 

that the polynomial ),...,,,,...,,( 21121 njnjnjnij xxxq +−+−+−ααα is the polynomial pertaining to the power 

products of 121 ,...,, +− jnααα  and the coefficients are formed by the sum of the monomials of the 

variables njnjn xxx ,...,, 21 +−+−  that corresponding to some terms in the original PS. Furthermore the 

coefficient of the power product t

t

m
i

m
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i ααα ...2
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1

1
 in the (3.9) is formed by the sum of all the coefficient 

polynomial determinants corresponding to that power product t

t

m
i

m
i

m
i ααα ...2

2

1

1
. And all the coefficient 

polynomial determinants are corresponding to some kind of separation of the original PS.  

For example, in the Dixon polynomial for the system (3.7), the coefficient polynomial determinants 

corresponding to the variable α  is the sum of two polynomial determinants:  
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= 

  
and  
  
  
  
  

  
        = 
                                                                   , 
  
we can easily find out that the right side of the expressions are corresponding to two different 
separations of the system (3.7). 
So, every coefficient of the Dixon polynomial can be obtained by separating the original polynomial 
system and constructing the polynomial determinant. On the other hand the Dixon resultant method is 
completely mechanical and the combinatorial method can construct polynomial determinants arbitrarily. 
Therefore there exist some polynomials that can be constructed by the combinatorial method but cannot 
by Dixon resultant method. From the discussion above we can draw the conclusion as follows: 
Theorem 3.3  The derived polynomial system by Dixon resultant method can be obtained by the 
combinatorial matrix approach. Furthermore, there exist some polynomials that can be derived by 
combinatorial matrix method which cannot be derived by Dixon resultant method. 
  
4. The Application of the Combinatorial Matrix Approach 
The combinatorial matrix method can be used to solve many geometrical and automated theory proving 
problems faster than other methods. However, some times a combinatorial derived system for a 
polynomial equation system may be singular. In those cases, we can choose a part of equations to form 
a non-singular sub-derived system and find the solution.  

Example 1 (Apollonius problem) Given three circles on the plane, find other circles tangent to all three.  
Equation (2.6) gives the relationship between the solution circle and the given circles. Theoretically 
there are eight solutions corresponding to the choice of the signs in (2.6).  
Generally, equation (2.6) has the form below: 

p 1 (x, y) ≡ x 2 + y 2 + a 3 x + a 4 y + a 5 =0, 
PS:        p 2 (x, y) ≡ x 2 + y 2 + b 3 x + b 4 y + b 5 =0 ,              

p 3 (x, y) ≡ x 2 + y 2 + c 3 x + c 4 y + c 5 =0 . 
We can construct two polynomials as follows: 

p 4 (x, y) ≡   P([1,5],[3],[2,4]) =τ (1,3,4)x 2 +τ (2,3,5)y +τ (3,4,5)=0,  
p 5 (x, y) ≡   P([1,3],[2,4],[5]) =τ (1,4,5)x -τ (1,3,5)y +τ (3,4,5)=0,  

Since the combinatorial matrix CM is not singular (det(CM)≠ 0 and has 306 terms), then { p 1 (x, y), 

p 2 (x, y),  p 3 (x, y),  p 4 (x, y),  p 5 (x, y)} forms the derived system for PS and it has solution.  
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To give a concrete example, take three circles center at (0,0) with radius 1, center at (0,5) with radius 3 

and center at (5,0) with radius 2 respectively. We first calculate the solution circle that all three circles 

are outside it.  

By substituting a 3 = 0, a 4 = 0, a 5 = -r 2 -2*r-1, b 3 = 0, b 4 = -10, b 5 = -r 2 -2*r-9, c 3 = -10, c 4 = 0, c 5 = 

-r 2 -2*r-4 to det(CM)=0, we can get a equation pertaining to the radius r: 

10000*(16-r 2 -6*r) 2 +10000*(21-r 2 -4*r) 2 -1000000+20000*(-r 2 -2*r -1) 2  

-1000000*r 2 -2000000* r -20000*(16-r 2 -6*r)*(-r 2 -2*r -1) 

-20000*(21-r 2 -4*r)*(-r 2 -2*r -1)=0. 

Solving it we get the radius 

 r = -(53/20)+(21/20)* 14 = 1.278740256.                        (4.1) 

By solving the derived system we get the center of the solution circle is 

 (x=1.944251949, y=1.188503898).  

Other solutions are listed below: 

   r =2.003,          (x=1.799400000, y=0.8988000000),             (4.2) 

                r =4.342793268,    (x=1.331441347, y=-0.0371173070),             (4.3) 

                r =3.068813079,    (x=1.586237384, y=0.4724747680),              (4.4) 
                r =4.568813079,    (x=1.286237384, y=-0.1275252320),             (4.5) 
                r = 4.842793268,    (x=1.231441347, y=-0.2371173070),             (4.6) 

                r =-2.003,   (no real solution for this case)                         (4.7) 
r =6.578740256,     (x=0.8842519490, y=-0.9314961020),           (4.8) 

It took less than one second to finish the calculation. 

Example 2 (Heymann problem [5,7] ) Let ABC be a triangle, a, b and c the length of the sides BC, AC 

and AB, a i and a e  the length of internal and external bisectors of angle A, and b e  the length of the 

external angle bisector of B. The objective is to express the side length a in terms of a i , a e  and b e . 

Furthermore determine if, given general value of the three angle bisectors, can one draw the triangle 

just using a compass and a ruler (if the expression involving a, a i , a e  and b e  is of degree 2 m  in a for 

some integral m).   

At first, we express a i , a e and b e  in terms of the lengths a, b and c. It is easily be done by Euclidean 

geometry. The expressions are below: 
                            a 2

i =                        ,   
     

                    a 2
e =                        , 

         
                    b 2

e =                        . 
    

2)(
))((

cb
abcabccb

+
++−+

2)(
))((

bc
abcabccb

−
+−++−

2)(
))((

ac
abcabcac

−
−+++−



 

Regarding a, b as independent variables and c , ai, ae , be  as dependent variables we rewrite the 

expression as follows:  

                                                ,  

 PS:                                           , 

                                                    . 

After calculating the 13 derived equations from PS by the combinatorial matrix method, we found the 

combinatorial matrix method is singular. Fortunately we can pick up 10 independent equations from the 

13 derived polynomials after doing the fraction-free Gauss elimination to form a triangle like equation 

system DS= { q1 ,q2 ,q3 ,q4 ,q5 ,q6 ,q7 ,q8 ,q9 ,q10 }. If let T=(tij) be the coefficient matrix for DS, then the 

last factor in T=(tij) is   

D = t 10,10 =-c20(4c2–a 2
i –a 2

e ) 2 (-288 c10 a12
e b 8

e -512 c14 a 10
e b 6

e + … +20488 c6 a14
i a 8

e b 2
e ). (326 terms) 

Let  d=(4c2–a 2
i –a 2

e ) 2 (-288 c10 a 12
e b 8

e -512 c14 a 10
e b 6

e + … +20488 c6 a 14
i a 8

e b 2
e ), 

P 0 = P 0 (c, a i , a e , b e )= t 9,9 = 174 a 16
i c25b 4

e +…-7680 a 14
i c25 a 6

e .                 (174 terms) 

P 1 = P 1 (c, a i , a e , b e )= t 10,9 = 4448 c30a 12
e b 4

e +…+256 c22 a 16
i a 8

e .                (209 terms) 

Q 0 = Q 0 (c, a i , a e , b e )= t 8,8 = -22 c22 a 14
e b 2

e +…+40 c20a 2
i a 12

e b 4
e .                (96 terms) 

Q 1 = Q 1 (c, a i , a e , b e )= t 9,8 = 48 c22 a 14
e b 2

e +…-48c20 a 2
i a12

e b 4
e .                  (93 terms) 

Q 2 = Q 2 (c, a i , a e , b e )= t 10,8 = -680 c23 a 12
i a 2

e b 2
e +…+3056c27 a 8

i a 4
e .             (108 terms) 

If ai ,ae ,bi and c satisfy d =0, then c can be determined from d =0. Suppose c = F(ai ,ae ,bi ), we can get 

an ascending sub-list from DS as follows: 
             P0 b+ P1 = 0, 

             Q0 a+ Q1 b+ Q2 = 0. 

From the expressions above we can get a and b:  

    b = –P1 /P0 ,  a = –(Q1(–P1 /P0)+ Q2)/ Q0 . 

In this way, the parameters a, b and c are presented as the function of the variable ai, ae and bi. The total 

time spent was 11 seconds.  

Since the expression D = -c20(4c2–a 2
i –a 2

e ) 2 (-288 c10 a 12
e b 8

e -512 c14 a10
e b 6

e + … +20488 c6 a 14
i a 8

e b 2
e ) is 

of degree 20 in the parameter a, instead of degree 2 m  in a, then the triangle cannot be constructed just 

by using of a compass and a ruler.  

Example 3   Expression for the distance of the intersection of two general conics from the origin. 

p 1 (x, y) ≡ a 1 x 2 + a 2 xy + a 3 y 2 + a 4 x + a 5 y + a 6 =0, 
PS:        p 2 (x, y)≡ b 1 x 2 + b 2 xy + b 3 y 2 + b 4 x + b 5 y + b 6 =0,                

p 3 (x, y)≡ x 2 +y 2 -T =0. 
The derived system by combinatorial matrix method is constructed as follows: 
   

))(()( 22
1 abcabccbcbap i ++−+−+=

))(()( 22
2 abcabccbbcap e +−++−−−=

))(()( 22
3 abcabccaacbp e −+++−−−=



 

a 1 x 2 + a 2 xy + a 3 y 2 + a 4 x + a 5 y + a 6 =0, 
b 1 x 2 + b 2 xy + b 3 y 2 + b 4 x + b 5 y + b 6 =0,                

DS:    x 2 +y 2 -T =0, 
τ (1,2,4)x 2 + (τ (1,2,5) +τ (1,3,4)) xy +τ (1,3,5)y 2 +τ (1,2,6)x +τ (1,3,6)y=0, 
τ (1,3,6) xy +τ (2,3,6)y 2 +τ (1,5,6)x +(τ (2,5,6)-τ (3,4,6))y+τ (4,5,6)=0, 
τ (1,3,4)x 2 + (τ (1,3,5) +τ (2,3,4)) xy +τ (2,3,5)y 2 +τ (1,3,6)x +τ (2,3,6)y=0. 

Let C denote the coefficient matrix of the DS. Then  

det(C)= 6 a 2
3 b 2

1 a 2
6 b 2

6 +…-2 a 2
2 b 3 b 3

4 a 4 a6T.                      (2424 terms) 

From det(C)=0, we can solve the parameter T=T(a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , b 1 , b 2 , b 3 , b 4 , b 5 , b 6 ). 

Then do the fraction-free Gauss elimination to get a triangle like coefficient matrix M. 

Let          D0  = M 5,5 = b 3
2 a 5 a 2

6 - a 6 b 3
4  a 2

3 +…-2 a 2
1 b 2 b5 b 1 a 6 T,          (348 terms) 

             D1  = M 6,5 = b 2 b 2
6 a 2

3 a 6 +…-2 a 3
1  b5 b 3 b 4 T 2 ,                (348 terms) 

Q 0 = M 4,4 = 2 a 2
4  b1 b 3 - b 2

2 a 6 a 3 +…- b 2
2 a 2

4 ,                 (36 terms) 

Q 1 = M 5,4 = b 2 a 2
3 b 6 + b 2 a 2

1 b 6 +…+ a 5 b1a1 b4,                 (40terms) 

Q 2 = M 6,4 = - b 6 a 2
3 b 4 - a 2

2 b 6 b 4 +…- b 1 a 5 a 2 b 3 T.            (46 terms) 

Then, D0 y+ D1 = 0 and Q0 x+ Q1 y+ Q2 = 0. From the expressions we can solve x and y:  
      y = –D1 /D0 ,  x = –(Q1(–D1 /D0)+ Q2) / Q0 . 

The time to obtain the condition for the common zero was 1.6 seconds. 
Example 4  Find the conditions for perpendicular intersection of a general conic and a general ellipse. 

p 1 (x, y)≡ a 1 x 2 + a 2 xy + a 3 y 2 + a 4 x + a 5 y + a 6 =0, 

PS:        p 2 (x, y)≡ b 1 x 2  + b 3 y 2 + b 4 x + b 5 y + b 6 =0,                

p 3 (x, y)≡         +          =0. 
The derived system by combinatorial matrix method is constructed as follows: 

a 1 x 2 + a 2 xy + a 3 y 2 + a 4 x + a 5 y + a 6 =0, 

b 1 x 2 + b 3 y 2 + b 4 x + b 5 y + b 6 =0,  

DS:     4a1b 1 x 2 +(2a 2 b 1 +2 a 2 b3)xy +4 a 3 b3y
2 +(2 a 4 +2 a 1 b 4 + a 2 b 5 )x  

+ (a 2 b 4 +2 a 5 b 3 +2 a 3 b 5 )y+ a 4 b 4 + a 5 b 5 =0, 

     τ (1,2,4)x 2 + (τ (1,2,5) +τ (1,3,4)) xy +τ (1,3,5)y 2 +τ (1,2,6)x +τ (1,3,6)y=0, 
τ (1,3,6) xy +τ (2,3,6)y 2 +τ (1,5,6)x +(τ (2,5,6)-τ (3,4,6))y+τ (4,5,6)=0, 
τ (1,3,4)x 2 + (τ (1,3,5) +τ (2,3,4)) xy +τ (2,3,5)y 2 +τ (1,3,6)x +τ (2,3,6)y=0. 

Let C denote the coefficient matrix of the DS. Then  

det(C)= -448 a1b
4
1 a 2

2 b 2
3 a 2

6 a 4 a 5 b 5 a 3 b 4 +…+16 a 4
3 b 6

1 a 4
4 b 2

6 .  (8465 terms) 

So, det(C)=0, is the necessary condition for PS has common zero. If the coefficients a 1 , a 2 , a 3 , a 4 , 

a 5 , a 6 , b 1 , b 3 , b 4 , b 5 , b 6  make det(C)=0, then the common zeros can be found by Gauss 

Elimination as above. It took 6.4 seconds to calculate the necessary condition. 
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5.  Experiment results and comparisons 
After comparing the combinatorial matrix method with other methods, we found the combinatorial 
matrix method has less calculating time in deriving the necessary condition for existing the common 
zeros. The calculating comparison for example 1 to 4 and for general cases (3.1) is listed in the table 
below: 

Example # Singular Terms Combinatorial Matrix Dixon Gröbner Sylvester 
1 S 306 0.1 s 0.66 s * 5.1 s 
2 S 326 4.2 s 6 s * 750 s 
3 S 2424 1.4 s 6.7 s * * 
4 N 8465 6.2 s 8.5 s * * 

(3.1) N 21894 5.3 s * * * 
 Table 1: Comparison of different Methods 

In the table above, a (*) indicate that either the computer shown “Error: object too large ” or gives no 
useful information. All examples were done on an AMD Duron 800 128M microcomputer.  
6.  Conclusion 
The Combinatorial Matrix Approach is presented and discussed. It is shown that the method in the cases 
of the polynomial systems with bi-variable in two degrees or with bi-variable in three degrees is more 
efficient than other methods. By applying the method one can eliminate several variables 
simultaneously. On the methodology of the deriving polynomials, it has more freedom. With the 
method one can reduce the degree of the coefficients in the finding of the necessary condition for the 
existence of the common zero and deduce the time complexity of the equation solving for the 
polynomial equation system with symbolic coefficients. The algorithm given here is just to show an 
idea and the outline of the Combinatorial Matrix Method.  
Many work need to be done to expand the method to the situation of any symbolic polynomial system 
with higher degree and more variables. Besides, the singular cases need to be treated in detail. By the 
way, it is unclear how the Dixon resultant can derive independent polynomials. It is still a black box 
that needs to be investigated further.      
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