
ATPCL.mth: Automated Theorem
Provers for Propositional Classical Logic

with Derive

Aguilera Venegas, Gabriel gabri@ctima.uma.es
Galán Garćıa, José Luis jl galan@uma.es

Gálvez Galiano, Antonio antonio@academiasanmillan.es
Rodŕıguez Cielos, Pedro prodriguez@uma.es

Department of Applied Mathematic
University of Málaga (Spain)

Abstract

In this paper the file ATPCL.mth is presented. This file has been developed
for using DERIVE as an automated theorem prover for Propositional Classical
Logic by means of different algorithms such as Quine, Semantic Tableaux and
Short Normal Form + Resolution.

The use of this utility file is specially useful for teachers and students in
subjects on Computational Logic in Computer Science degree. In particular,
the file can be used as a didactical tool for helping in the teaching and learning
of automated logic deduction process.

In order to develop these algorithms, another utility file has been created
to deal with tree structure using the new features of programming in DERIVE.
In this paper this utility file (tree.mth) will be also described.

The use of these utility files will be presented by means of some examples
about validity, satisfiability and deduction using both utility files. Finally,
conclusions and future work will be shown.

1 Introduction

The main aim that have guided the develop of the packages tree.mth and ATPCL.mth
has been to obtain a practical tool for using automated theorem provers in Proposi-
tional Classical Logic. The initial idea was motivated by the necessity of introducing

1

some practical classes in the subject of Computational Logic. This subject belongs
to the Computer Science Degree in the University of Malaga. Practical classes were
necessary for helping students to work with automated theorem provers but no much
time was available for these practical classes. Derive is a powerful tool that can
be used in this subject and in others of the same degree, specially subjects involv-
ing mathematics. The previous time necessary for explaining basic characteristic of
Derive is very short so the student can take practical classes spending a very little
quantity of time.

Of course the methods included in the packages can be used not only for peda-
gogical reasons but for solving “real” reasoning problems. Moreover the commands
included in tree.mth can be used in a very wide range of applications.

The methods included in the package ATPCL.mth are refutation systems, that
is, for proving the formula A, the formula ¬A is introduced to the system. If
¬A is a contradiction (unsatisfiable) then A is valid and in other case A is non
valid. Analogously, for proving the reasoning {H1, H2, . . . , Hn} |= C the formula
B = H1 ∧ H2 ∧ . . . Hn ∧ ¬C is the input of the method and if the result is that B
is satisfiable then the reasoning is not valid and in other case the reasoning is valid.
Therefore, the methods in the package are methods for testing the satisfiability of a
formula.

In section 2 a brief description of the methods for automated theorem proving
Quine, Semantic Tableaux and Short Normal Form + Resolution are included for
helping in the description of the package ATPCL.mth.

In section 3 the utility file tree.mth is presented, including the syntax of the
commands and examples of using them.

In section 4 the package ATPCL.mth is presented, including the syntax of the
commands and examples of using them.

Finally some conclussions and future work are shown in section 5.

2 Some methods for automated theorem proving

in Propositional Classical Logic

In this section, some of the most well known automated theorem provers for Propo-
sitional Classical Logic will be briefly described. A more detailed description can be
found in [4, 2, 3].

2.1 Quine

This method is a variant of the method of the truth tables but improving it using
partial interpretations due to Quine. It can be seen in [2]. Let be A a propositional
formula and let P = {p1, p2, . . . , pn} the set of propositional symbols in A. Let be J

2

a set of integers such that if j ∈ J then j ∈ {1, 2, . . . , n} or −j ∈ {1, 2, . . . , n}. Let
be IJ the interpretation that assigns IJ(pk) = 1 if k ∈ J and IJ(pk) = 0 if −k ∈ J .
IJ(A) can be 0, 1 or unknown (?). The method begins with Quine(A, ∅) and it is
described below.

Quine(f, J, i := 1, l, r, J+, J−, lq, rq) :=
Prog

If i > n
RETURN ”error”

J+ := J ∪ {i}
J− := J ∪ {−i}
l := IJ+(f)
If l = 1

RETURN J+
r := IJ+(f)
If r = 1

RETURN J−
If l = ”?”

Prog
lq := Quine(A, J+, i + 1)
If lq 6= ”UNSAT”

RETURN lq
If r = ”?”

Prog
rq := Quine(A, J−, i + 1)
If rq 6= ”UNSAT”

RETURN rq
RETURN”UNSAT”

Since if | J |= n then IJ(A) can not be ”?”, the method ends.

2.2 Semantic Tableaux

Semantic Tableaux is a refutation method so initially a set of propositional formulae
S = {A1, A2, . . . , An} is given. The algorithm has to return S SATISFIABLE or
S UNSATISFIABLE. For the description of the algorithm, uniform notation due
to Smullyan [6] will be introduced. In this notation formulae are classified in α-
formulae and β-formulae. Each α-formula is equivalent to the conjunction of two
formulae α1 and α2. Analogously each β-formula is equivalent to the disjunction of

3

two formulae β1 and β2. Next table shows the different possibilities:

α α1 α2 β β1 β2

A ∧B A B A ∨B A B
¬(A ∨B) ¬A ¬B ¬(A ∧B) ¬A ¬B
¬(A → B) A ¬B A → B ¬A B
¬¬A A A A ↔ B A ∧B ¬A ∧ ¬B

¬(A ↔ B) ¬A ∧B A ∧ ¬B

Another important concept for the description of the algorithm is tableau or
Jeffrey’s tree [5]. A Jeffrey’s tree is a tree which nodes are labelled with propositional
formulae. A branch of a Jeffrey’s tree is called closed if A and ¬A occur in the branch
for some formula A.

The initial step in the algorithm is to consider the one branch tree associated
with

S = {A1, A2, . . . , An}, that is:
A1

A2
...
An

Let α be a not marked α-formula to apply an α-rule to α means to mark the
formula α and to add the tree T to every leaf in the tree, not closed and descendant

of α. Where T = α1 if α1 = α2 or
α1

T = α2
in other case.

Analogously, let β be a not marked β-formula to apply an β-rule to β means to
mark the formula β and to add the tree T to every leaf in the tree, not closed and

descendant of α. Where T = β1 if β1 = β2 or

∧
T = β1 β2

in other case. A

branch of a Jeffrey’s tree is called open if is not closed and all the formulae except
literals in the branch are marked.

The algorithm consists of the following steps:

1. Take the one branch of the Jeffrey’s tree corresponding to S = {A1, A2, . . . , An}.

2. If a branch of the Jeffrey’s tree is open then S is unsatisfiable, literals in the
branch correspond to a model for S and END.

3. If all the branches of the Jeffrey’s tree are closed then S is unsatisfiable and
END.

4. If a formula α without mark exists, apply an α-rule to the first in deep formula
α, else got to step 6.

4

5. Review open and closed branches and go to step 2.

6. If a formula β without mark exists, apply a β-rule to the first in deep formula
β.

7. Review open and closed branches and go to step 2.

2.3 Short Normal Forms + Resolution

2.3.1 Short Normal Forms

Translating a formula to clausal form by renaming is a method due to Boy de la
Tour [3]. Form a propositional formula A, a set of clauses Ω (set of sets of literals)
equisatisfiable with A is obtained. Let P = {p1, p2, . . . , pn} the set of propositional
symbols in A. Ω is obtained recursively as follows:

1. contSNF := n + 1

2. Ω := {{contSNF}} ∪ SNF (A, contSNF)

where operator SNF is defined recursively as follows:

• SNF (pi, cont) := i

• SNF (¬B, cont) :=
Prog(contSNF := contSNF+1, rd := contSNF, rt := SNF (B, contSNF),

If(INTEGER?(rt), P rog(contSNF := contSNF−1, RETURN(−rt)),
RETURN({{cont, rd }, {−cont,−rd }} ∪ rt)))

• SNF (B ∧ C, cont) := Prog(contSNF := contSNF + 1,
ld := contSNF, lt := SNF (B, contSNF),
If(INTEGER?(lt), P rog(rd := contSNF, rt := SNF (C, contSNF)),

Prog(contSNF := contSNF+1, rd := contSNF, rt := SNF (C, contSNF)))
If(INTEGER?(rt), contSNF := contSNF − 1),
If(¬INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN((lt ∪rt)∪{{−cont, ld }, {−cont, rd }, {cont,−ld ,−rd }})),
If(INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN(rt ∪ {{−cont, lt }, {−cont, rd }, {cont,−lt ,−rd }})),
If(¬INTEGER?(lt) ∧ INTEGER?(rt),

RETURN(lt ∪ {{−cont, ld }, {−cont, rt }, {cont,−ld, − rt }})),
If(INTEGER?(lt) ∧ INTEGER?(rt),

RETURN({{−cont, lt }, {−cont, rt }, {cont,−lt ,−rt }})))

5

• SNF (B ∨ C, cont) := Prog(contSNF := contSNF + 1,
ld := contSNF, lt := SNF (B, contSNF),
If(INTEGER?(lt), P rog(rd := contSNF, rt := SNF (C, contSNF)),

P rog(contSNF := contSNF+1, rd := contSNF, rt := SNF (C, contSNF)))
If(INTEGER?(rt), contSNF := contSNF − 1),
If(¬INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN((lt ∪rt)∪{{cont,−ld }, {cont,−rd }, {−cont, ld , rd }})),
If(INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN(rt ∪ {{cont,−lt }, {cont,−rd }, {−cont, lt , rd }})),
If(¬INTEGER?(lt) ∧ INTEGER?(rt),

RETURN(lt ∪ {{cont,−ld }, {cont,−rt }, {−cont, ld , rt }})),
If(INTEGER?(lt) ∧ INTEGER?(rt),

RETURN({{cont,−lt }, {cont,−rt }, {−cont, lt , rt }})))

• SNF (B → C, cont) := Prog(contSNF := contSNF + 1,
ld := contSNF, lt := SNF (B, contSNF),
If(INTEGER?(lt), P rog(rd := contSNF, rt := SNF (C, contSNF)),

P rog(contSNF := contSNF+1, rd := contSNF, rt := SNF (C, contSNF)))
If(INTEGER?(rt), contSNF := contSNF − 1),
If(¬INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN((lt ∪rt)∪{{cont, ld }, {cont,−rd }, {−cont,−ld ,−rd }})),
If(INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN(rt ∪ {{cont, lt }, {cont,−rd }, {−cont,−lt ,−rd }})),
If(¬INTEGER?(lt) ∧ INTEGER?(rt),

RETURN(lt ∪ {{cont, ld }, {cont,−rt }, {−cont,−ld, − rt }})),
If(INTEGER?(lt) ∧ INTEGER?(rt),

RETURN({{cont, lt }, {cont,−rt }, {−cont,−lt ,−rt }})))

• SNF (B ↔ C, cont) := Prog(contSNF := contSNF + 1,
ld := contSNF, lt := SNF (B, contSNF),
If(INTEGER?(lt), P rog(rd := contSNF, rt := SNF (C, contSNF)),

P rog(contSNF := contSNF+1, rd := contSNF, rt := SNF (C, contSNF)))
If(INTEGER?(rt), contSNF := contSNF − 1),
If(¬INTEGER?(lt) ∧ ¬INTEGER?(rt),

RETURN((lt ∪ rt)∪
{{−cont,−ld , rd }, {−cont, ld ,−rd }, {cont,−ld ,−rd }, {cont, ld , rd }})),

If(INTEGER?(lt) ∧ ¬INTEGER?(rt),
RETURN(rt ∪

{{−cont,−lt , rd }, {−cont, lt , rd }, {cont,−lt ,−rd }, {cont, lt , rd }})),
If(¬INTEGER?(lt) ∧ INTEGER?(rt),

RETURN(lt ∪
{{−cont,−ld , rt }, {−cont, ld , rt }, {cont,−ld,−rt }, {cont, ld,rt }})),

6

If(INTEGER?(lt) ∧ INTEGER?(rt),
RETURN({{−cont, lt , rt }, {−cont, lt , rt }, {cont,−lt ,−rt }, {cont, lt , rt }})))

2.3.2 Ground Resolution

Resolution is based on the following inference: {A ∨ B,¬A ∨ C} |= B ∨ C, where
A, B, C are formulae. In the particular case in which l is a literal (implemented
as an integer) and C1 and C2 are clauses (implemented as sets of integers) and
l ∈ C1 and −l ∈ C2 the following inference is obtained: {C1, C2} |= Rl(C1, C2)
where Rl(C1, C2) = (C1\{l}) ∪ (C2\{−l}. Rl(C1, C2) is called resolvent of C1 and
C2 with regard to literal l. In the particular case that C1 = {l} and C2 = {−l},
Rl(C1, C2) = 2, that is the empty clause.

Let Ω be a set of clauses (implemented as a set of sets of integers). Ω is unsat-
isfiable if and only if 2 can be obtained form Ω adding resolvents of clauses in Ω to
Ω.

Ground resolution is a basic (and inefficient) method described below.

1. Ω0 = Ω

2. i := 1

3. Ωi := Ωi−1 ∪ {Rl(C1, C2) | l ∈ C1;−l ∈ C2; C1, C2 ∈ Ωi−1}

4. If (2 ∈ Ωi, RETURN (Ω UNSATISFIABLE))

5. If (Ωi = Ωi−1, RETURN (Ω SATISFIABLE))

6. Go to step 3.

2.3.3 Chaining both methods

Let be A a propositional formula. Let be Ω the set of clauses applying Short Normal
Forms to A. Now ground resolution is applied to Ω. Since Ω is equisatisfiable with
A, if the result is of resolution is Ω UNSATISFIABLE then A is unsatisfiable and
A is satisfiable in the other case.

3 The utility file tree.mth

The following functions have been developed in the utility/demo dfw file tree.dfw to
manage binary trees, specially syntactic trees of propositional formulae.

• Basic tree management functions

7

◦ NewBTree() returns the empty (binary) tree [].

Example:

NewBTree()

[]

◦ MakeBtree(ro,le,ri) returns the binary tree which root is ro, his left son
is le and his right son is ri.

Example:

MakeBTree(”O”, 1, -2)

[1, O,−2]

◦ Root(t) returns the root node of the tree t.

Example:

Root([1, ”O”,−2])

O

◦ Left(t) returns the left son of the root node of the tree t.

Example:

Left([1, ”O”,−2])

−2

◦ Right(t) returns the right son of the root node of the tree t.

Example:

Right([1, ”O”,−2])

−2

• Strings and Trees

◦ StringtoTree(f) makes the syntax analysis of f (f is a propositional for-
mula delimited by quotation marks), returning the corresponding syntac-
tic tree.

Example:

StringtoTree(”(p → q) ↔ (q ∧ ¬p)”)

[[1, I, 2], F, [2, O,−1]]

◦ TreetoString(t) returns the string of the propositional formula which syn-
tactic tree is t.

Example:

TreetoString([[1, ”I”, 2], F, [2, ”O”,−1]])

(p → q) ↔ (q ∧ ¬p)

8

4 The package ATPCL.mth

The following functions have been developed in the utility/demo dfw file ATPCL.dfw
to use Derive as an Automated Theorem Prover for Propositional Classical Logic.
The algorithms which have been implemented are Quine, Semantic Tableaux and
Short Normal Forms plus Resolution.

• Quine

◦ Quine(t) to check the satisfiability of the syntactic tree t of a formula A
using Quine method. If A is unsatisfiable then ”UNSAT” is return. If
A is satisfiable then a list of literals corresponding to a model of A is
returned.

Examples:

Quine(StringtoTree(”(p → q)IFF (¬p ∨ q)”))

[-1]

Quine(StringtoTree(”¬((p → q)IFF (¬p ∨ q))”))

UNSAT

◦ InferenceQuine(h,f) to check if the formula f (conclusion) can be deduced
from the list of formulae h (hypothesis) using Quine method. In case that
the inference were non-valid a countermodel is returned.

Examples:

InferenceQuine([”p → q”, ”p ∨ r”, ”r → t”], ”q ∨ t”)

VALID INFERENCE

InferenceQuine([”p → q”, ”p ∨ r”, ”r → t”], ”q ∧ t”)

NON VALID INFERENCE. COUNTERMODEL: I(t) = 0, I(r) = 0, I(q) = 1, I(p) = 1

◦ TAUTQuine(f) to check if the formula f is a valid formula using Quine
method. In case that the formula were non-valid a countermodel is re-
turned.

Examples:

TAUTQuine(”(p → q) ∨ (q → p)”)

VALID FORMULA

TAUTQuine(”(p → q) → (q → p)”)

NON VALID FORMULA. COUNTERMODEL: I(q) = 1, I(p) = 0

◦ SATQuine(f) to check if the formula f is a satisfiable formula using Quine
method. In case that the formula were satisfiable a model is returned.

Examples:

SATQuine(”(p → q) → (q → p)”)

9

SATISFIABLE FORMULA. MODEL: I(p) = 1

SATQuine(”(p → q) ∧ ¬(p → q)”)

UNSATISFIABLE FORMULA

• SemanticTableaux

◦ SemanticTableaux(f) to check the satisfiability of the formula f using
Semantic Tableaux method. If A is unsatisfiable then [] is return. If A is
satisfiable then a list of literal corresponding to a model of f is returned.

Examples:

SemanticTableaux(”¬(p → p)”)

[]

SemanticTableaux(”p ∨ q”)

[1]

◦ InferenceSemanticTableaux(h,f) to check if the formula f (conclusion)
can be deduced from the list of formulae h (hypothesis) using Semantic
Tableaux method. In case that the inference were non-valid a counter-
model is returned.

Examples:

InferenceSemanticTableaux([”p ↔ q”, ”p → r”, ”¬r”], ”¬q”)

VALID INFERENCE

InferenceSemanticTableaux([”p ↔ q”, ”p → r”, ”¬r”], ”q”)

NON VALID INFERENCE. COUNTERMODEL: I(p) = 0, I(q) = 0, I(r) = 1

◦ TAUTSemanticTableaux(f) to check if the formula f is a valid formula
using Semantic Tableaux method. In case that the formula were non-
valid a countermodel is returned.

Examples:

TAUTSemanticTableaux(”(pIMPq)or(qimpp)”)

VALID FORMULA

TAUTSemanticTableaux(”(pIMPq)AND(qimpp)”)

NON VALID FORMULA. COUNTERMODEL: I(q) = 0, I(p) = 1

◦ SATSemanticTableaux(f) to check if the formula f is a satisfiable formula
using Semantic Tableaux method.

Examples:

SATSemanticTableaux(”(pimpq)and(qimpp)”)

SATISFIABLE FORMULA. MODEL: I(q) = 0, I(p) = 0

SATSemanticTableaux(”(porq)IFF (notpandNOTq)”)

UNSATISFIABLE FORMULA

10

• Short Normal forms plus Resolution

◦ SNF(t). If t is the sintactic tree of A then SNF(t) returns a set of clauses
(set of sets of integers) equisatisfiable with A.

Example:

SNF(”(p ∨ q) ∧ ¬p”)

{{-1, 5}, {-2, 5}, {4}, {-4, -1}, {-4, 5}, {-5, 1, 2}, {-5, 1, 4}}
◦ GroundResolution(s) to check the satisfiability of the set of clauses s (set

of sets of integers). It returns ”SAT” or ”UNSAT”.

Example:

GroundResolution({{−1, 5}, {−2, 5}, {4}, {−4,−1}, {−4, 5}, {−5, 1, 2}, {−5, 1, 4}})
SAT

◦ InferenceResolution(h,f) to check if the formula f (conclusion) can be
deduced from the list of formulae h (hypothesis) using short normal forms
plus resolution method.

Examples:

InferenceResolution([”pimpq”, ”p”], ”q”)

VALID INFERENCE

InferenceResolution([”porq”], ”notp”))

NON VALID INFERENCE

◦ TAUTSResolution(f) to check if the formula f is a valid formula using
short normal forms plus resolution method.

Examples:

TAUTResolution(”p or not p”)

VALID FORMULA

TAUTResolution(”p or q”)

NON VALID FORMULA

◦ SATResolution(f) to check if the formula f is a satisfiable formula using
short normal forms plus resolution method.

Examples:

SATResolution(”p or q”)

SATISFIABLE FORMULA

SATResolution(”p and not p”)

UNSATISFIABLE FORMULA

11

5 Conclusions and future work

5.1 Conclusions

The package ATPCL.mth has been developed in Derive. This package implement
some Automated Theorem Provers for Propositional Classical Logic. The algorithms
which have been implemented are: Quine, Semantic Tableaux and Short Normal
Forms plus Resolution. The file ATPCL.dfw has a brief description of every user
function and some examples. In the package, the structure of binary tree is widely
used, so another package tree.mth has been added together with the file tree.dfw
containing some explanations and examples too.

5.2 Future work

In the short term the implementation of the resolution method made in the package
will be improved using ordered linear resolution instead of ground resolution. In the
medium term, another method for automated theorem proving called TASD (see
[1]) will be implemented in Derive. And in the long term methods for First Order
Logic and for some non standard logics will be developed using Derive.

References

[1] Aguilera, G., P. de Guzmán, I., Ojeda-Aciego, M. y Valverde, A. Reductions
for non-clausal theorem proving. Theoretical Computer Science 266 (1-2) (2001)
81–112.

[2] Aguilera, G., P. de Guzmán, I. Lógica para la Computación vol. I. Ágora (1993).

[3] Boy de la Tour, T. Minimizing the number of clauses by renaming. Proc 10th

CADE, Kaiserslautern, Springer, Heidelberg, (1990) 558–572.

[4] Fitting, Melvin First-Order Logic and Automated Theorem Proving Springer-
Verlag, 1990.

[5] Jeffrey, R, Formal Logic: its scope and limits. McGraw-Hill, 1981.

[6] Smullyan, R. M First-Order Logic. Springer-Verlag, 1968.

12

	Introduction
	Some methods for automated theorem proving in Propositional Classical Logic
	Quine
	Semantic Tableaux
	Short Normal Forms + Resolution
	Short Normal Forms
	Ground Resolution
	Chaining both methods

	The utility file tree.mth
	The package ATPCL.mth
	Conclusions and future work
	Conclusions
	Future work

	toabstr:

