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A first way of finding the approximate value of an integral is, when that is possible, to 
replace the function by a power series expansion
Derive allows to show rather easily what such an expansion means.

We will consider only one simple case here: that of the function defined by  
f(x)=sin(x)+cos(x) 

f(x) ≔ SIN(x) + COS(x)

Derive obviously makes it possible to find a Taylor expansion to a high order number 
generated by this function: 

                       4      3      2         
                      x      x      x          
TAYLOR(f(x), x, 4) =  -  -  + x + 1
                      24      6      2         

We can then plot on the same graph these different polynomial functions as well as the f 
function curve. We will note that the curves are nearer and nearer to that of f.  We can obtain 
all these curves with only one instruction.  

k ≔ 0

PROG(k ≔ k + 1, TAYLOR(f(x), x, 0, k))

But Derive 6 makes it possible to highlight this proximity more dynamically.
To do this, we build a function depending on a parameter. While varying this parameter, we 
will observe a continuous "polynomial" deformation. 
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To simplify our work, we write functions which will highlight this continuous variation.

InputMode ≔ Word

p1(x) ≔        
  If x < 0     
     0         
     If x ≥ 1/3
        1      
        3·x    

p2(x) ≔            
  If x < 1/3       
     0             
     If x ≥ 2/3    
        1          
        3·(x - 1/3)

p3(x) ≔            
  If x < 2/3       
     0             
     If x ≥ 1      
        1          
        3·(x - 2/3)

Then a function g defined in the following way :

                         2              3            4 
                        x              x            x  
g(x) ≔ 1 + x + p1(a)·-  + p2(a)·-  + p3(a)·
                         2              6           24 

We open a new 2D_plot window and we associate the variable to a slider bar with the 
following properties    

We start by plotting the graph of g then that of f (the order is important).  We can then 
modify the parameter value in the slider bar to see the curve of g changing with continuity.
Graphically, we can make the assumption that the function g when a = 1 gives a good 
approximation of f on the interval [ - 1,1 ]. 
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                      4      3      2         
                     x      x      x          
SUBST(g(x), a, 1) =  -  -  + x + 1
                     24      6      2         

We are thus being able to approach the integral of f on this interval by that of g. We have: 

⌠   4      3      2                  5      4      3      2     
  x      x      x                  x      x      x      x      
  -  -  + x + 1 dx =  -  -  +  + x
⌡  24      6      2                120     24      6      2     

 1                                         
⌠     4      3      2                    
    x      x      x                 101 
    -  -  + x + 1 dx = 
⌡    24      6      2                 60 
 -1                                        

 1                                 
⌠     4      3      2            
    x      x      x             
    -  -  + x + 1 dx
⌡    24      6      2            
 -1                                

1.683333333

 1                                 
∫   (SIN(x) + COS(x)) dx = 2·SIN(1)
 -1                                

2·SIN(1)

1.682941969

Traditional methods of 
approximations and their speed of 

convergence 
We will look briefly at  some traditional methods of approximate-calculation  integrals and 
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will compare their speed of convergence with two examples . 

Traditionnal methods

Rectangle approximation method

These are based on two possible formulas: 
either using the left points (left rectangle approximation method LRAM)

1

0
( )

nb

a
k

b a b af x dx f a k
n n

−

=

− − ≈ + 
 

∑∫
or using the right points (right rectangle approximation method RRAM)

1
( )

nb

a
k

b a b af x dx f a k
n n=

− − ≈ + 
 

∑∫

Derive has a built-in function which allows the left sum calculation 

             1                 1879 
LEFT_RIEMANN, x, 1, 2, 5 = 
             x                 2520 

For the right sum, it is easy to build a new function :

                                n   b - a                  k·(b - a) 
right_riemann(u, x, a, b, n) ≔  ∑  ·SUBSTu, x, a + 
                               k=1    n                        n     

              1                 1627 
right_riemann, x, 1, 2, 5 = 
              x                 2520 

The trapezoidal method

This is defined by the formula:

( )
1

1( ) ( ( ( 1) ))
2

nb

a
k

f x dx h f a kh f a k h
=

≈ + + + +∑∫
with h=(b-a)/n.
The approximation provided by the trapezoidal method appears as the arithmetic mean of the 
approximations given by the two rectangle approximation methods.
We can thus define a function: 

                       1                                 
trap(u, x, a, b, n) ≔ ·(LEFT_RIEMANN(u, x, a, b, n) + 
                       2                                 
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right_riemann(u, x, a, b, n))
                             

     1                 1753 
trap, x, 1, 2, 5 = 
     x                 1260 

  1879     1627           
  +           
  2520     2520      1753 
 = 
        2            2520 

The Midpoint Method

The midpoint method also uses rectangles, but does not provide an interval around the 
integral. 
We obtain for example:  

The formula used in approximate calculation is: 

( )1 1

0 0

2 1
( )

2 2

n nb

a
k k

k hhf x dx h f a kh h f a
− −

= =

+  ≈ + + = +  
   

∑ ∑∫

With Derive, we have : 

point_milieu(u, x, a, b, n, h) ≔                           
  Prog                                                     
    h ≔ (b - a)/n                                          
    RETURN h·∑(SUBST(u, x, a + (2·k + 1)·h/2), k, 0, n - 1)

             1                 479378 
point_milieu, x, 1, 2, 5 = 
             x                 692835 
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                   1                         
APPROXpoint_milieu, x, 1, 2, 5, 5 = 0.6919
                   x                         

To obtain the graph, we use a small program which is written in two different times: 

                         a1   0 
                                
                         a1  b1 
rectangle(a1, b1, a2) ≔         
                         a2  b1 
                                
                         a2   0 

The "rectangle" procedure makes it possible to plot a rectangle whose apex are the points of 
coordinates: 
(a1,0),(a1,b1),(a2,b1),(a2,0) (indicated in the matrix). 

graph_point_milieu(u, x, a, b, n, h, gr, k, a1, b1, a2) ≔
  Prog                                                   
    gr ≔ [[]]                                            
    h ≔ (b - a)/n                                        
    k ≔ 0                                                
    Loop                                                 
      a1 ≔ a + k·h                                       
      b1 ≔ SUBST(u, x, a1 + h/2)                         
      a2 ≔ a1 + h                                        
      gr ≔ INSERT(rectangle(a1, b1, a2), gr, 0)          
      k ≔ k + 1                                          
      If k = n                                           
         RETURN gr                                       

The program "graph_point_milieu" makes it possible to build a set of successive rectangles, 
arranged in "a large" named matrix "gr.". 
On condition, of course, they you select the option "connected points ".  

                   1               
graph_point_milieu, x, 0.5, 2, 5
                   x               
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Simpson's method

We approach the integral by a sum of integrals of 2nd-degree polynomial functions.
The formula of computation is given by  

( )( ) ( )
1 1 1

0 0 0

2( ) 1
3 2 6 6

n n nb

a
k k k

h h hf x dx h f a kh f a k h f a kh
− − −

= = =

 ≈ + + + + + + + 
 

∑ ∑ ∑∫
With this formula, we can determine the link between the formula of Simpson and those of 
the rectangle approximation methods and the midpoint method. 
We have :

2 1 1simpson( , ) point_milieu( , ) left_riemann( , ) right_riemann( , )
3 6 6

a b a b a b a b= + +

With Derive, we obtain 

                             2                                   
simpson(u, x, a, b, n, h) ≔ ·point_milieu(u, x, a, b, n, h) + 
                             3                                   

 1                                                                    
·(LEFT_RIEMANN(u, x, a, b, n, h) + right_riemann(u, x, a, b, n, h))
 6                                                                    

        1                 48408065 
simpson, x, 1, 2, 5 = 
        x                 69837768 

              1                          
APPROXsimpson, x, 1, 2, 5, 5 = 0.69315
              x                          

Brief summary 

Let us examine the 5 methods seen for integral calculation and compare the results obtained 
with the value that gives Derive for ln2. We have: 
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                     1                               
        LEFT_RIEMANN, x, 1, 2, 5                  
                     x                               
                                                       
                     1                               
       right_riemann, x, 1, 2, 5        0.74563 
                     x                             
                                             0.64563 
                 1                                 
            trap, x, 1, 2, 5            0.69563 
APPROX           x                  , 5 =          
                                             0.6919  
                     1                             
        point_milieu, x, 1, 2, 5        0.69315 
                     x                             
                                             0.69314 
                  1                                  
          simpson, x, 1, 2, 5                     
                  x                                  
                                                       
                    LN(2)                              

Simpson’s method seems to be most precise, the trapezoidal and midpoint methods are 
equivalent, and finally rectangle approximation methods seem the 
We can look at that more closely  least precise. 

                     1                                           
        LEFT_RIEMANN, x, 1, 2, 5 - LN(2)                      
                     x                                           
                                                                   
                     1                              0.052487   
       right_riemann, x, 1, 2, 5 - LN(2)                    
                     x                              -0.047512  
                                                                 
                 1                                  0.0024877  
APPROX      trap, x, 1, 2, 5 - LN(2)     , 5 =              
                 x                                 -0.0012391  
                                                                 
                     1                                      -6 
        point_milieu, x, 1, 2, 5 - LN(2)        3.1245·10   
                     x                                           
                                                                   
                  1                                              
          simpson, x, 1, 2, 5 - LN(2)                         
                  x                                              

Is it possible to specify the precision of these methods? 
Of course, there are traditional demonstrations which allow us, under certain conditions to 
study this precision formally. But initially, it can be interesting for students who do not know 
the problem, to have a more experimental approach. 
This is the goal  of  the second part of the paper.

Study of the speed of convergence
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We will  mainly use the example which we have already met several times before, by 
preserving the same step in each case. 
This step is shown relatively precisely in the first cases and only evoked for the others.

Left rectangle approximation method

Here, we define a new function which measures the variation in absolute value between the 
result returned by the LRAM for a partition which gives a number of subintervals k and the 
value given by Derive for ln(2)  

                                1             
pr_lr(k) ≔ LN(2) - LEFT_RIEMANN, x, 1, 2, k
                                x             

APPROX(pr_lr(10), 20) = 0.02562422261

APPROX(pr_lr(15), 20) = 0.01694429046

APPROX(pr_lr(20), 20) = 0.01265620123

To study the evolution of the precision in accordance with the number of subintervals, it is 
undoubtedly easier to use to the natural logarithm (and even the opposite of this logarithm 
since they will only be negative numbers).

log_pr_lr(k) ≔ - LN(pr_lr(k))

APPROX(log_pr_lr(10), 3) = 3.66

APPROX(log_pr_lr(20), 3) = 4.37

We can  calculate a table of the values for a few values of k

TABLE(log_pr_lr(k), k, 10, 150, 10)

We plot these points in an adapted cartesian coordinate system (X-coordinates between -10 
and 150, Y-coordinates between -1 and 7).
We obtain a curve which ressembles a logarithmic curve. 
We then find  an "equation" of this adjustment using the function  FIT.

APPROX(FIT([x, a·LN(x) + b], TABLE(log_pr_lr(k), k, 10, 150, 10)), 3)

1·LN(x) + 1.35
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What is the quality of this adjustment? We will examine the question on a graphic point of 
view.

TABLE(log_pr_lr(k), k, 10, 150, 10)

1·LN(x) + 1.35

The adjustment seems to be of very good quality.

If  we name p(k) precision as function of k (p(k)=pr_lr(k)), we have roughly

p(x) ≔

(let us notice that Derive forces us to define a function p to be able to use it formally)

- LN(p(k)) = LN(k) + 1.35

APPROX(EXP(- LN(p(k)) = LN(k) + 1.35), 3)

        0.259 
p(k) = 
          k   

This important result  shows that in this particular case (but we know that this result spreads) 
the error made by rectangle approximation method is inversely proportional to the number of 
subintervals.
Then we start the same thing again with another function.

 1                   
∫  COS(x) dx = SIN(1)
 0                   

       1                         
APPROX∫  COS(x) dx = 0.8414709848
       0                         

pr_lr_cos(k) ≔ SIN(1) - LEFT_RIEMANN(COS(x), x, 0, 1, k)

0.9910073905·LN(x) + 1.514564526

APPROX(FIT([x, a·LN(x) + b], TABLE(- LN(pr_lr_cos(k)), k, 10, 150, 
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10)), 3)

0.994·LN(x) + 1.5

We find a result of the same magnitude as the precedent.

Trapezoidal method

We use the same step again with the approximation that  the trapezoidal method gives us.
We  define  the function:  

                          1             
pr_trap(k) ≔ LN(2) - trap, x, 1, 2, k
                          x             

We have  for example the following results:

APPROX(pr_trap(10)) = 0.0006242226157

APPROX(pr_trap(20)) = 0.000156201234

We find the highest degree of accuracy of the trapezoidal method compared to the rectangle 
approximation method. 
We can calculate a table of the values

TABLE(- LN(pr_trap(k)), k, 10, 150, 10)

The shape of the curve is "a logarithmic curve". 
We thus try another adjustment of this type for the opposite of the logarithm of the precision 
(-ln(pr_trap(k))

FIT([x, a·LN(x) + b], APPROX(TABLE(- LN(pr_trap(k)), k, 10, 150, 10)))

 287937·LN(x)     6018175 
 + 
    143992        2169432 

This can be rounded-off to 10^-2
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       287937·LN(x)     6018175                     
APPROX + , 3 = 2·LN(x) + 2.77
          143992        2169432                     

We can  once again "check graphically" the quality of the adjustment

We again find a relation between p(k) and k

- LN(p(k)) = 2·LN(k) + 2.77

APPROX(EXP(- LN(p(k)) = 2·LN(k) + 2.77), 3)

        0.0626 
p(k) = 
           2   
          k    

As  for  the rectangle approximation method,  we can study  the other function now.

pr_trap_cos(k) ≔ SIN(1) - trap(COS(x), x, 0, 1, k)

FIT([x, a·LN(x) + b], APPROX(TABLE(- LN(pr_trap_cos(k)), k, 10, 150, 

10)))

 4165219·LN(x)     1232506 
 + 
    2082564         463817 

       4165219·LN(x)     1232506                     
APPROX + , 3 = 2·LN(x) + 2.65
          2082564         463817                     

Once again the order of magnitude is identical to that found with the other function. 

We shall finish by Simpson’s method 

Simpson's méthod

We repeat the same step.
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                             1             
pr_simp(k) ≔ LN(2) - simpson, x, 1, 2, k
                             x             

                                    -7
APPROX(pr_simp(10)) = 1.941055719·10  

                                    -8
APPROX(pr_simp(20)) = 1.218847226·10  

The Simpson’s method seems to be really the most precise.  
We can calculate values of opposite of logarithms of this function which are then plotted.

TABLE(- LN(pr_simp(k)), k, 10, 150, 10)

We find again the same logarithmic curve shape.

FIT([x, a·LN(x) + b], APPROX(TABLE(- LN(pr_simp(k)), k, 10, 150, 10)))

 1769473·LN(x)     3764901 
 + 
     445353         594470 

       1769473·LN(x)     3764901                        
APPROX + , 3 = 3.97·LN(x) + 6.33
           445353         594470                        

We deduce that

- LN(p(k)) = 3.97·LN(k) + 6.33

APPROX(EXP(- LN(p(k)) = 3.97·LN(k) + 6.33), 3)

        0.00178 
p(k) = 
          3.97  
         k      

The precision is thus approximately proportional  to the inverse of k^4. 
If we look at this result with the other function:

pr_simp_cos(k) ≔ SIN(1) - simpson(COS(x), x, 0, 1, k)

FIT([x, a·LN(x) + b], APPROX(TABLE(- LN(pr_simp_cos(k)), k, 10, 150, 

10)))

 1149027·LN(x)     5820094 
 + 
     295984         681195 

       1149027·LN(x)     5820094    
APPROX + , 3
           295984         681195    

3.88·LN(x) + 8.54

This result is equivalent to the precedent.
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