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1. Introduction   
 
The current interest in the use of neural networks in medical applications has raised 
the important issue of explaining individual inferences by the network [1].  This is 
important from a practical point of view in order to properly verify and validate the 
neural network model, but also from a legal standpoint as the doctrine of ‘learned 
intermediaries’ places on the clinician a responsibility to understand any inferences 
derived from the model. 
 
This paper proposes a principled method to overcome common limitations in current 
rule-extraction models, meeting the requirements of accuracy in representing the 
decision inferences made by the network, together with computational efficiency to 
scale-up to high numbers input dimensions.  The latter is particularly important in 
medical applications as the variables are often categorical, which in 1-from-N coding 
leads to a proliferation of binary attributes. 
 
An important reason for not using the model structure directly in rule extraction is that 
the simplest and most informative decision surfaces may require complex networks, 
while over-simple networks e.g. of minimal size after pruning, may block those 
surfaces by pushing the model configuration into what amounts to local minima in the 
space of decision surfaces [2].  This apparently surprising result means that simple 
models can get in the way of simple rules and is consistent with good practice in 
network design where the network complexity is controlled by appropriate 
regularization, rather than by cutting out nodes [1]. 
 
The final section of this paper demonstrates some of the strategies used to implement 
this principled method in the computer algebra system Derive 6. 
 
2. Theoretical framework 
 
Tsukimoto [3] showed that the logic from a multi-layer perceptron with output 

1 2( , , , )ny f x x x=  can be optimally resolved by approximating the response surface 
in [0,1] as a 2n multilinear function of the form  
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For example a 2 input network can be approximated in [0,1]  
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The constants ia  are generated from the network output 1 2( , , , )nf x x x  by 
substituting 1jx =  or 0 into the network.  
 
For example a 2 input network  
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By definition, for the values { }0,1jx ∈  
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i.e. the multilinear function  is equal to the network response at all the vertices of an n 
dimensional unit hypercube.   The vertices of a unit hypercube corresponds to 
Boolean atoms and hence if the response of a network is greater than or equal to 0.5 at 
a vertex, the Boolean atom at that vertex is present within the disjunctive normal form 
of the Boolean function that best approximates the network’s response surface. 
 
For example, if a 2 input network is approximated to the multilinear function 
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This approximation is exact for the values { }0,1jx ∈  and it has been shown [3] that 
the best Boolean approximation to the logic fitted by the response surface is obtained 
by rounding the coefficients ia  to binary values. The main limitation of this 
framework is that it is exponential in complexity.  Tsukimoto [3] proposes a 
polynomial algorithm for the MLP. However, this is a decompositional approach, that 
is to say it builds the logic of the response surface by propagating rules generated 
individually for each hidden and output node. It can be shown with a counter-example 
that this can lead to incorrect rules.  Consequently the preferred approach to 
implement this theoretical framework is the so-called ‘pedagogical rules ‘, which use 
only the input-output response of the network ignoring the detailed structure of the 
analytical model used to fit a smooth surface to the data.   This scalar model of 
Boolean logic applied to multi-linear approximations of neural networks (which are 
exact in{0,1}) and the evaluation of the nearest Boolean atoms are exploited in the 
algorithm developed below. 
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3. OSRE Algorithm   
 
In general, response surfaces are smooth approximations generated by interpolating 
the best fit to a finite data sample and are unreliable when extrapolating beyond the 
data space containing the sample.  In a high dimensional input space the training data 
occupies only a small fraction of the total space and outside the regions where data are 
present the response surface is in fact being extrapolated which, with non-linear 
models, is generally unreliable.  The algorithm presented here uses the training data to 
identify the region of the space for which the response surface has been accurately 
constructed.  Consequently this algorithm scales as the number of data, rendering the 
method scaleable to high input dimensions on which the complexity depends linearly. 
 
Tsukimoto’s scalar Boolean model shows that we can find the optimal Boolean 
function that describes the outputs of a network with respect to binary inputs [3].  The 
Boolean function is constructed from the disjunction of the scalar atoms that have an 
activation greater than 0.5. This is an exponential problem as the number of atoms for 
n inputs is 2n , however the number of atoms we need to find the disjunction of can be 
restricted to the number of atoms with activation greater than 0.5 in which the training 
data lies.  One further consideration is that even with a manageable number of atoms 
to evaluate, each of the atoms is a conjunction of length n. Whilst powerful computer 
algebra systems can find disjunctions of a large number of Boolean functions, there is 
an issue in terms of the length of time to perform the simplification of this disjunction 
and the comprehensibility of any such simplification.   
 
We can circumvent the need to find the simplification of all the active data atoms by 
use of the Boolean identity 
 ( ) ( )x y x y y∧ ∨ ¬ ∧ = ,  
where x is a variable and y is any Boolean function.  These variables form a 
conjunctive factorisation of the simplification of all these atoms. For example, if it is 
found the atom 1 2 3 4x x x x  is an activated data item and the neighbours 1 2 3 4x x x x  and 

1 2 3 4x x x x  are the only neighbours that are not activated then the simplification of the 
conjunction of the activated data item and it’s activated neighbours simplifies to 

2 4 1 3( , )x x B x x  where B is some Boolean function of 1x  and 3x .     
 
Therefore, if an atom is active and its nearest neighbour in the x direction is also 
active, then variable x cancels out in the simplification of the disjunction of these two 
atoms. Another way of viewing this is that the activation of the surface does not 
change between the two atoms, so the surface does not change in the region of these 
two atoms and hence the variable that is negated has no influence on changing the 
response of the network in the region of these two atoms. However, if the activation 
of the atoms does change from greater than 0.5 to less than 0.5, then the variable is 
influential in changing the response of the network within this region.  We term this a 
discriminating variable.  By visiting all the ‘neighbours’ of a data item, the influential 
variables within this region of the space are identified. By visiting all the data items 
and their neighbours we can identify all the influential variables in the space occupied 
by the data and space immediately surrounding the data.   
 
As Tsukimoto [3] shows, the disjunction of all the active atoms provide the optimal 
Boolean function for the network, this subset of rules then provide optimal rules for 
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the region occupied by the data.  Hence this method is providing optimal rules for the 
training data set.  In fact this algorithm transcribes to the RULENEG algorithm 
developed by Pop et al [4] and another related algorithm in [5] also traced back to the 
Probably Approximately Correct (PAC) framework of Valiant [6].  So far we have 
shown here that RULENEG will generate optimal rules from Binary data sets. 
 
If there are categorical or ordinal variables that are not binary, then RULENEG 
cannot be applied to the data even if the variable attributes are represented by separate 
binary variables using 1-from-N coding.  This is because RULENEG visits atomic 
neighbours, but the very nature of 1-from-N coding rules out the possibility of atomic 
neighbours.  The difference between RULENEG and the algorithm presented here is 
demonstrated in the figures below, where black spheres indicate permitted atoms and 
the dotted arrows show the search pattern.  
 

x y z  

x y z

x y z  

 
 
 
 
 

x y z  

x y z

x y z

 
 
 

 
 

Fig. 1. The RULENEG algorithm inspects 
nearest neighbours in the atomic hypercube, 

which violates 1-from-N coding. 

Fig. 2. The proposed algorithm inspects only the 
singe variable atomic sub space of valid codes. 
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We can determine the conjunctive factors of influential variables by searching the 
multi-variable space for changes in the network's response, sweeping each variable 
over its possible values whilst keeping the all other variables constant.  
 

 
 

Fig. 3. Illustration of the proposed search algorithm for conjunctive factors of influential variables. 
 

If there are m variables, each with up to n values there are at most mn points to 
evaluate, which is not tractable to very high values of m.  Moreover, restricting the 
search to the data predicted to be within class and searching in orthogonal directions 
from the data point reduces the search space to a polynomial problem.          
 
Consider a variable with three attributes coded as 1-from 3 binary vectors. If each of 
the elements of these data items are x, y and z then corresponding atoms in Boolean 
form are x y z , x y z  and x y z  respectively.  Atoms in these forms are the atomic 
representation of a single variable therefore we will refer to them as single variable 
atoms and the space they occupy as the single variable atomic subspace.   If we find 
that presenting the binary variables to the network that inputs [1,0,0] and [0,1,0] have 
activations greater than 0.5 and [0,0,1] is less than 0.5, then the rule will be the 
disjunction of the atoms x y z  and x y z . However,   

( ) ( )ex y z x y z x y x y z x y z∨ = ∨ ∧ = ∨ ∧  
which is the equivalent of 
 1 1 1( 1 2) 3a a a= ∨ = ∧ ≠ . 
 
In an analogous fashion to RULENEG, we now have a methodology for finding rules 
by observing the changes in activations from each atom to its nearest valid neighbour.  
These atoms are comprised of sub-atoms that represent the different variables as 
indicated below 
 

1,1 1,2 1,3 1, 2,1 2,2 2,3 2,

,1 ,2 ,3 ,

[ , , , , | , , , , |
| , , , , ]

n n

m m m m n

a a a a a a a a
a a a a

. 

 
Each of these sub atoms are unit orthogonal vectors which have only one element 
with the value 1 and the others being 0. 
 
The goal of rule extraction is to find understandable rules that discriminate between 
the classes, that is they will be representative of a great deal of the data in class but are 
not representative of a great deal of data out of class.  In essence in this rule extraction 
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algorithm constructs the disjunction of all of the positively activated single variable 
atoms present in the data.  This is likely to lead to rules that are very large, in terms of 
number and of length, and hence not comprehensible. 
 
We can now develop a rule extraction algorithm for multi-valued variables 
 
Algorithm 
 
1. Train the neural network with binary attributes  using 1-from-N coding. 
2. Loop over the training data.  
3. For each data point if the activation is <0.5, move to the next data point 
    Else, sweep the attributes of the first variable whilst keeping all the other variables 

values fixed.  
          Evaluate the network response and if it is   <0.5 then append 0 to a list, else 

append 1 
  If the list contains only 1’s then move on to the next variable, else 
     Reverse the list, set rule(1)=vector of positions where the element=1 
 Repeat for each variable and place the results in rule(i) 

4.  Add rule(1) AND rule(2) AND …..  rule(n)  to a list ConjunctRule 
5.  Repeat for all training data, resulting in a set of rules the size of the training data. 
6. Remove repeated rules. 
7. Take each rule generated and test with the training data; find how many of training 
data that are in class are correctly classified by the rule (c) and how many of the out of 
class data are incorrectly classified as in class by this rule (i).  For m data points in 

class and n data out of class, evaluate the ratio ( )c n i
m n
+ −
+

. This ratio determines how 

accurate the rule was in discriminating between in and out of class for the training 
data. Order the rules in terms this ratio. 
8. Take the rule with the highest ratio and determine if the disjunction of it with any 
the rules below equals the highest rule (i.e. the lower ratio rule subsumes into the 
higher ratio rule).  If so remove all these lower rules.  Repeat for rule with the next 
highest ratio and keep repeating down the hierarchy of rules until no further rules can 
be deleted from the list. This results in a list of rules in order of accuracy for the 
training data. 
 
 
4. Results 
 
The method was applied to standard datasets, namely the three standard Monks 
datasets and the Wisconsin breast cancer database, from the repository of machine-
learning data at the University of California Irvine [7]. 
 
As the Monks problems are artificially generated, the rules are known.  The data set 
consists of 6 variables that have the values 

 1 2 3

4 5 6

1, 2,3 1,2,3 1,2
1,2,3 1,2,3,4 1,2

a a a
a a a
= = =
= = =

 

and two classes. 
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Rules extracted for  Monks 1 
 
The algorithm extracted 4 distinct rules only from the network 

5 1 2

1 2 1 2

( 1) ( 1)( 1)
( 2)( 2) ( 3)( 3)
a a a

a a a a
= ∨ = = ∨
= = ∨ = =

 

 
The known rule is 

5 1 2( 1) ( )a a a= ∨ = . 
 
Rules Extracted for Monks 2 
 
The algorithm extracted 15 distinct rules, too many to present here.  One such rule 
was  

6 5 4 3 2 1( 1)( 1)( 1)( 1)( 1)( 1)a a a a a a= = ≠ ≠ ≠ ≠  
with every other rule being  of this form, permutating through all 15 possibilities of 
the different indexes. 
 
The known rule is  
EXACTLY TWO of 

1 2 3 4 5 6{  1,  1,  1,  1,  1,  1}a a a a a a= = = = = =  
 
Rules Extracted  for Monks 3 
 
The algorithm extracted 4 rules 

5 5 2 5 4( 3) ( 3)( 2) ( 3)( 1)a a a a a≤ ∨ ≤ ≤ ∨ = =  
The known rule is  

5 4 5 2( 3) ( 1) ( 4)( 3)a a a a= = ∨ ≠ ≠  
 
In each of the Monks cases the algorithm has extracted a rule that is exactly 
equivalent to the known rule. 
 
 
Wisconsin breast cancer data 
 
This data has 9 variables each with discrete values from 1 to 10.  There are two 
classes, benign and malignant.  Initially the algorithm produced 8 rules, not mutually 
exclusive, from which we pruned out the rules which were least specific for 
malignancy of which there were 4 rules.   Each of these rules was further reduced by 
removing attributes that had little effect on the sensitivity and specificity of the rule, 
resulting in the rule 
 

6 1 8( 9)( 9)( 2)a a a≤ ≤ ≤  
 
Of the 114 benign tumours in the training data, this rule identifies 106 correctly and 7 
of the 86 malignant tumours incorrectly, i.e. 185/200 correct classifications (92.5%).  
Of the 330 benign tumours in the test data, this rule identifies 313 correctly 
(specificity is 94.8%) and 4 of the 153 malignant tumours incorrectly (sensitivity is 
97.4%).  i.e. 462/483 correct classifications (94.8%). 
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5. Tools and Hurdles in Programming OSRE in Derive 6 
In order to efficiently implement the OSRE algorithm in Derive, a number of 
functions needed to be developed that performed particular tasks. 
 
Removing repetitions in a dataset 
It is inefficient to have repetitions of the same data when using the OSRE algorithm as 
it causes the algorithm to search areas of the space that have already been searched. 
 
In Derive, a set does not allow repetitions of the elements, so converting a vector of 
data items into a set will remove any repetitions and converting this set back to a 
vector produces a copy of the original vector with repetitions removed. 
 
Step 1  
 
To convert a vector to a set 
 
VECTOR_2_SET(v) ≔ MAP_LIST(v  , k_, {1, ..., DIM(v)}) 
                            k_ 
VECTOR_2_SET([1, 2, 3, 0, 4, 4, 0, 4, 0, 4, 0, 5, 5, 5, 7]) 
 
={0, 1, 2, 3, 4, 5, 7} 
 
Step 2 
 
Convert the set back to a vector 
 
VECTOR(v, v, {0, 1, 2, 3, 4, 5, 7}) 
 
=[0, 1, 2, 3, 4, 5, 7] 
 
 
or as a single function 
 
COMPRESS(v):=VECTOR(u,u,VECTOR_2_SET(v)) 
 
The COMPRESS function is a particularly useful function in the OSRE algorithm as 
otherwise it would create many identical rules as it scans the data space. 
 
For one particular part of the implementation of the OSRE algorithm I needed to be 
able to identify the position or positions of a particular element in a vector. This 
function did the trick: 
 
Positions(a,v,count,v_,size):= 
PROG( 
 v_:=[], 
 size:=DIM(v), 
 count:=1, 
 LOOP( 
  IF(count>size, RETURN REVERSE(v_)), 
  IF(IDENTICAL?(a,v sub count), 
   v_:=ADJOIN(count,v_) 
  ),  
 count:+1 
 ) 
)  
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Checking rules found by OSRE with the data 
An important part of the OSRE algorithm is that once a rule has been identified it 
needs to be validated with the data.  The algorithm produces rules in a form, for 
example 
{ } { } [ ]{ }1 3 5,[1, 2,3] , ,[3, 4] , , 1, 2a a a    

which is a representation of the conjunctive rule 
 

1 3 5(1 3) (1 3) (1 2)a a a≤ ≤ ∧ ≤ ≤ ∧ ≤ ≤     (*) 
 
 or more compactly  

1 3 5(1 3)(1 3)(1 2)a a a≤ ≤ ≤ ≤ ≤ ≤  
 
The difficult task was to get Derive to interrogate the data with the rules generated to 
test for the sensitivity, how many times the rules is correct; and specificity, how many 
times the rule predicted incorrectly.   
 
Step 1 
Convert each rule in the form { }1,[1, 2, 4,5]a  
into the form 
( )1 1(1 2) (4 5)a a≤ ≤ ∨ ≤ ≤       (**) 
 
In the first implementation in Derive 5.06, the rule in the form found in (*) was used 
within a SELECT function to determine the data that obeyed this rule. e.g.  
 
SELECT( 1 3 5(1 3) (1 3) (1 2)a a a≤ ≤ ∧ ≤ ≤ ∧ ≤ ≤ , a, data) 
 
However, the SELECT function did unexpected things within PROG and LOOPS and 
I never did resolve what was going wrong but a work around was to write a new 
SELECT function: 
 
MYSELECT(u,k,n):=APPEND(VECTOR(IF(u,[k],[]),k,n))  
  
 
In Derive 5.06 this method of identifying data that obeyed the rules worked very well.  
However, when the code was used in Derive 6, the both SELECT() and MYSELECT() 
functions for certain rules hung! The reason for this, as far as I can gather, is that the 
simplification routine within DERIVE that resolves expressions of the form found in 
(*) was changed.  In effect expressions involving terms of the form (**) within terms 
of the form (*),  
 
e.g.   ( )1 1 3 5(1 2) (4 5) (1 3) (1 2)a a a a≤ ≤ ∨ ≤ ≤ ∧ ≤ ≤ ∧ ≤ ≤  
 
 were taking inordinate time to simplify or hung in a loop.  This particular example 
does simplify in DERIVE 6 very easily but the OSRE algorithm genereates much 
bigger and complicated expressions and it was these expression that trouble DERIVE 
6 (but not DERIVE 5.06). 
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This was actually a good lesson, in that the simplification of theses expressions is 
unnecessary for our purposes and a method of selecting the data that obeyed the rules 
without the need to construct (and hence simplify) the conjunctive expressions of the 
form found in (*). 
 
Convert a rule vector into and interval 
e.g { } { } [ ]{ } [ ]1 3 5 1 3 5,[1, 2,3] , ,[3, 4] , , 1, 2 1 3,3 4,1 2a a a a a a  ⇒ ≤ ≤ ≤ ≤ ≤ ≤   

 
Step 1 
Convert he rule vector into a matrix of the consecutive integers: 
 
Intervals(v, size, intervals, interval, intervals, counter) ≔ 
  Prog                                                        
    size ≔ DIM(v)                                             
    intervals ≔ []                                            
    counter ≔ 1                                               
    interval ≔ [FIRST(v)]                                     
    Loop                                                      
      If counter = size                                       
         Prog                                                 
           interval ≔ REVERSE(ADJOIN(v↓counter, interval))    
           RETURN REVERSE(ADJOIN(interval, intervals))        
      If v↓(counter + 1) > v↓counter + 1                      
         Prog                                                 
           interval ≔ REVERSE(ADJOIN(v↓counter, interval))    
           intervals ≔ ADJOIN(interval, intervals)            
           interval ≔ [v↓(counter + 1)]                       
      counter :+ 1 
 
 

e.g. 
                                            1   3  
                                                   
Intervals([1, 2, 3, 5, 6, 7, 9, 10, 11]) =  5   7  
                                                   
                                            9  11  
 

Step 2 
Convert each row of the matrix formed in step 1 into expressions of the form 

1 1 1(1 3) (5 7) (9 11)a a a≤ ≤ ∨ ≤ ≤ ∨ ≤ ≤ . 
 
 
RulesToIntervals(rules,counter,size,displayrules,rule):= 
PROG( 
 counter:=1, 
 size:=DIM(rules), 
 logicrules:=true, 
 displayrules:=[], 
 LOOP( 
  IF(counter>size,  
   RETURN [REVERSE(displayrules),rules] 
  ), 
  rule:=RuleToInterval(rules SUB counter),  
  displayrules:=ADJOIN(rule,displayrules), 
  counter:+1 
 ) 
) 
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e.g.  
 
RuleToInterval({a sub 1,[1, 2, 3, 5, 6, 7, 9, 10, 11]})= 
 
9 ≤ a  ≤ 11 ∨ 5 ≤ a  ≤ 7 ∨ 1 ≤ a  ≤ 3 
     1             1            1 
 

Step 3 
A final function that converts a conjunction of rules into a vector of the conjunctions 
of the form developed in step 2. 
 
RulesToIntervals(rules,counter,size,displayrules,rule):= 
PROG( 
 counter:=1, 
 size:=DIM(rules), 
 logicrules:=true, 
 displayrules:=[], 
 LOOP( 
  IF(counter>size,  
   RETURN [REVERSE(displayrules),rules] 
  ), 
  rule:=RuleToInterval(rules SUB counter),  
  displayrules:=ADJOIN(rule,displayrules), 
  counter:+1 
 ) 
) 
 

e.g.   
 
RulesToIntervals({a , [2, 3]}, {a , [1, 2, 3, 5]}, {a , [1, 2]}, {a , [1]})= 
                   9             8                   2             1       
 
  2 ≤ a  ≤ 3   a  = 5 ∨ 1 ≤ a  ≤ 3   1 ≤ a  ≤ 2    a  = 1    
       9        8            8            2         1        
                                                             
 {a , [2, 3]}  {a , [1, 2, 3, 5]}   {a , [1, 2]}  {a , [1]}  
   9             8                    2             1        
 
 

(original rule vector added as a second row in case it is required at a later stage). 
 
 
Checking the accuracy of the rules with the data 
In Derive 5.06 the conjunction of the rules found in step 3 of above,  
e.g.  

9 8 8 2 1(1 3) ((1 3) 5) (1 2) 1a a a a a≤ ≤ ∧ ≤ ≤ ∨ = ∧ ≤ ≤ ∧ = ,  (***) 
 
were constructed and the SELECT() function was used to check for the number of 
occurrences  of the data that obey this rule. As mentioned earlier in DERIVE 6, some 
of the large expressions like (***) generated by this code took inordinate amounts of 
time to simplify  and some expressions never simplified within hours.  Another 
strategy was needed!   
 
The ConjTest Function 
The strategy was to not form a conjunctive expression form from the elements of the 
vector formed from the first row of the RulesToIntervals() function, but to test each 
rule separately on each data item and count every data item for which every rule 
worked.  The function False?(v)  returns a value of false if any element of v has the 
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values false, else it returns true, i.e. if all the rules hold for a data item False?(v)  
returns true. 
 
e.g. 
 
SUBST(2 ≤ a  ≤ 3, a  = 5 ∨ 1 ≤ a  ≤ 3, 1 ≤ a  ≤ 2, a  = 1, a, [1, 1, 0, 1, 1, 1, 9, 2, 1, 2, 0])= 
           9       8            8           2       1     
 
[false, true, true, true]. 
 
 
False?([false, true, true, true]) = false 
 
 
 
ConjTest(v,var,data,class,classindex,test,total_in,total_out):= 
PROG( 
  total_in:=0, 
  total_out:=0, 
  LOOP( 
   IF(data=[], RETURN [total_in,total_out]), 
   test:=False?(SUBST(v,var,FIRST(data))), 
   IF(test AND FIRST(data) sub classindex=class, 
    total_in:+1 
   ), 
   IF(test AND FIRST(data) sub classindex/=class, 
    total_out:+1 
   ), 
   data:=REST(data) 
 )    
)  
 
 

Class is the value of the class the data item is in and classindex refers to the column of 
the data matrix that contains the classification values.  In the example in this paper, 
the class values of the data are in the 11th column and the class values are either 1 or 
0. 
 
ConjTest(2 ≤ a  ≤ 3, a  = 5 ∨ 1 ≤ a  ≤ 3, 1 ≤ a  ≤ 2, a  = 1, a, data, 1, 11)= 
              9       8            8           2       1     
 
[67, 26] 

 
In this particular dataset the number of data in class 1 is 78 and out of class is 481, 
hence the sensitivity of this rule is  
 
 67  
 
 78  
 
0.8589743589 
 

and the specificity is 
 
      26  
1 -  
     481  
 
0.9459459459 

 
Which for this data is a good rule! 
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