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Abstract

This paper discusses computer-mediated thinking and some of its pos-
sible implications for curriculum design in mathematics education. We be-
gin with a discussion of today’s context and of ideas related to computer-
mediated thinking. We continue with examples of the use of computer-
mediated thinking in modern applied mathematics. We then extract some
suggestions for a curriculum in mathematics centred at the calculus level.
We include specific suggestions for removing material from the current
syllabus. We end with a discussion of the unintentional power of the
calculus.

1 Context

Computer-mediated thinking is not necessarily the same as computer-mediated
teaching. One may use technology to teach the same things that were taught
before technology became available. Indeed, one may use technology to teach
those things better, by promoting active learning or (for instance) by using
technology to implement ‘just-in-time-teaching’ [14]. This is what some people
call ‘computer-mediated teaching’.

What I mean by ‘computer-mediated thinking’ is something different; it
is what Andrea di Sessa calls ‘material intelligence’ [11] and what Peter Jones
calls an ‘intelligent partnership’ [16]. We will see details of several mathematical
examples of this later in the paper, but for now here are instances of computer-
mediated thinking from several fields.

Computational Materials Physics One use of computational tools is to visu-
alize atoms and their interactions and thereby make them part of our experience;
this can be done in no other way [Martin Müser, private communication].

Applied Ethics: Peter Danielson uses agents programmed with simple rules,
game theory, and simulations to investigate the emergence (or non-emergence)
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of ethical behaviour in groups. This leads to insights into human behaviour
that are not easily accessible by introspection or by inspection of the historico-
political record. See http://www.ethics.ubc.ca/people/danielson/

Computer-generated music: In his Nerenberg lecture “Chaotic music and
fractal art: a glimpse into the neurophysiology of aesthetics”, Leon Glass (McGill
University) discussed computer programs that generated ‘synthetic Mozart’:
genuinely emotionally meaningful music generated by a computer program that
contained a database of Mozart’s works and chaotic dynamics for randomness.
The result was surprisingly pleasant, and very reminiscent of Mozart. This
is qualitatively different from arranging and playing Bach on a synthesizer, as
W. Carlos did (so beautifully). Unfortunately, I do not have the original refer-
ence and cannot cite the person who wrote this program and/or composed the
music, mediated of course by computer.

Computer-aided proofs and discovery of new mathematics: The most
famous computer-aided proof is that of the four-colour theorem, by Appel and
Haken in 1977 [1, 2]. There have now been many mathematical theorems proved
by computer. I find it more interesting that genuinely new mathematics has
arisen from computational studies: for instance, solitons, complexity, chaotic
dynamics, and new combinatorial identities and methods for solving recur-
rence relations and summing series. See in particular Doron Zeilberger’s home
page http://www.math.rutgers.edu/∼zeilberg/ and his opinions.

1.1 Counterexamples: the map is not the territory

“Sir, I decided to help you, and so I ran your circuit in SPICE. Your
circuit doesn’t work.”—a student to Mark W. Tilden (the father of
BEAM Robotics). Mark’s wordless response: he took down a robot
using the circuit in question, turned it on and showed the student
that it was the SPICE simulation that was wrong.

“Because of a wonky software package called S+, many EPA studies
on smoking-related deaths have been called into question.” — an
unfair newspaper article (the convergence test in S+ did indeed have
a bad default value, but it is the users of the package who were at
fault.)

We are all aware of the danger of using computation as a substitute for
thought—students computing an example and considering that suffices as proof,
for instance. The danger is real, though guessing and verification by sampling go
a lot farther towards proof than a skeptic might think: consider the prevalence
of Monte Carlo and other probabilistic algorithms, which work in a fashion that
allows the user to bound the probability of failure. But sometimes we may be
misled by computation; see for example [4].

Some people think they want this, but they are wrong.
—Kelly Roach
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There is also computer-mediated avoidance of thought. By this I mean us-
ing a computer or wireless handheld device to cheat with (instant messaging,
email, SMS, file sharing, essay/exam services, etc.); these force us to use elec-
tronic countermeasures. There are also the annoying facts of life of computers:
malicious viruses, scumware and adware; gratuitous software and hardware “up-
dates” and “upgrades”; and incompatibilities amongst the myriad constellations
of equipment surrounding both us and our students.

This is just life.

1.2 Let us begin as we mean to go on

This paper is not about teaching styles; you will already know that there is a
great deal of evidence now that teaching methods can be dramatically improved
by using active learning [11, 14]. This paper is also not about progress in
the cognitive psychology of learning, through which we may build theoretical
models of what it is we want to do for students. See [12], for example, or Uri
Leron’s recent work on the dissonance between social (natural) reasoning and
mathematical reasoning [18].

[Learning mathematics consists of]
a gradual and painful reversal of perspective. —Uri Leron

It is my belief that technology simply extends this process—mathematicians
have themselves had to painfully reverse their own perspective when confronted
with the task of implementing their theorems. This is where the concept of
“Lies to Children” comes in (see The Science of Discworld by Terry Pratchett,
Ian Stewart, and Jack Cohen). A “lie to children” is a useful oversimplification
that starts one on the path to better knowledge. It is a truth unacknowledged
that mathematics before computers was a lie to children.

This paper is about teaching mathematics “on shifting sand” (cf. [17]); the
way people do and use mathematics is changing more rapidly now than in any
previous era. Regardless of teaching style, regardless of how people learn, we
have to recognize this, and deal with it.

This paper is also about my opinion of what topics should be taught in
the near future, and how to accommodate the changes to come. I make no
prescriptions as to how this material should be taught—I am more concerned
with the content of the curriculum in the ubiquitous presence of technology.

2 Examples

2.1 Summation of series

Recent work by Zeilberger, Wilf, Gosper, Petkovšek, and others has given rise to
the fully automated solution of several problems that formerly required signifi-
cant ingenuity. For example, one may ask Maple to sum series that are beyond
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the reach of most first-year students: e.g.,

N∑
n=1

n2

2n
= −4 (1/2)N+1 (N + 1)− 6 (1/2)N+1 − 2 (1/2)N+1 (N + 1)2 + 6

and, perhaps more surprisingly,

S(x) =
∑

n≥1

xn

n2
= polylog(2, x)

which introduces a function doubtless unknown to the first-year student (albeit
very well described in the beautiful book [19]). Numerical evaluation of the sum
in Maple at some random point, say x = −3, gives S(−3) = −1.93937542 . . .,
while evaluation of the function gives polylog(2,−3.0) = −1.9393754207667 . . .,
in perfect agreement.

At this point there might be a little head-scratching on the part of the reader:
x = −3 is outside the circle of convergence for that series, but Maple did not
cavil at the sum. Indeed, even Maple’s numerical summation technique, which
uses Levin’s u-transform to speed up convergence, also got the right answer,
agreeing with the polylog function, which is the Euler sum of the series.

Not only has Maple introduced a function unknown to the student, it has
introduced a new meaning for the summation symbol. These are both good
things (albeit surprising). This will be taken up again later. For now, I leave
you with two apparently antithetical quotes:

The divergent series are the invention of the devil, and it is a shame
to base on them any demonstration whatsoever. —N. H. Abel

This series is divergent. Therefore, we may be able to do something
with it. —O. Heaviside

2.2 Eigenvalues are answers, not questions

Eigenvalues and eigenvectors are deeply useful. The word eigen in German has
several meanings, but the relevant ones for matrices are “innate”, “own”, and
(in the old sense of ‘characteristic’) “peculiar”. Eigenvalues and eigenvectors
are innate characteristics of a matrix (say A): an eigenvalue-eigenvector pair is
a scalar (say λ) and a vector (say x) such that, to the vector x, the matrix A
acts like a scalar, in that Ax = λx. More generally, matrix pencils (A,B)—a
peculiar way of saying pairs (A,B)—have generalized eigenvalues and eigenvec-
tors: αAx = βBx for some scalars α and β. If α 6= 0 then we can put λ = β/α,
but if α = 0 then we say that the eigenvalue is infinite.

Eigenvalues are taught to students by considering the characteristic polyno-
mial det(A − λI) or det(αA − βB); the zeros of the polynomial are the eigen-
values, and once the eigenvalues are known it is a simple job to compute the
eigenvectors.
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There’s no such thing as a simple job. —Tim Daly

Eigenvalues and eigenvectors have physical meaning. Possibly the most im-
portant is in the theory of vibration. A structural system (say a building in the
wind, or an airplane wing, or an undersea cable) has mass and stiffness; if the
vibration is small and the damping can be neglected, then we can often write
the equations of motion of the structural system as Mẍ = −Kx using the mass
matrix M and the stiffness matrix K. The eigenvalues of this pencil are the
natural frequencies of vibration (actually the squares of the natural frequencies),
and the eigenvectors depict the physical “mode shape” of vibration.

Eigenvalues and eigenvectors are so important in applied mathematics that
many hundreds of person-years have gone into creating reliable, efficient soft-
ware for their computation. Now we come to the rub: as an afterthought,
the problem-solving environment Matlab included a roots function to compute
polynomial roots. It worked by constructing a companion matrix whose eigen-
values were the roots and then using its eigenvalue routine! For example, one
companion matrix for p(x) = x5 − 4x4 − 3x3 − 2x2 − x− 9 is

A =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
9 1 2 3 4




as can be verified by computation1 of det(xI −A).
This approach makes sense if you already have an eigenvalue solver, and

was taken up by the HP series of calculators. The TI calculator did polynomial
roots first,by a stable and efficient method known as Laguerre’s method [David
Stoutemyer, private communication], and added eigenvalues afterward, which
seems more logical, and efficient in use of space and time.

But it turns out that in a technical sense eigenvalues are easier to compute
than polynomial roots—they are less sensitive to changes in their data: in the
jargon, polynomial roots are often ill-conditioned (an old phrase that meant
rude, boorish, or ill-mannered, two hundred years ago), whereas eigenvalues
are usually well-conditioned. Improvements in hardware and software mean
that efficiency considerations hardly apply any more. Even in Maple (formerly
notoriously slow) one may compute eigenvalues of an 800 by 800 matrix in
35 seconds on a battery-powered laptop. Therefore, nowadays, the sensitivity
aspects are more important.

Here is where many mathematicians had to (slowly and painfully) reverse
their perspective. It is eigenvalues that are more geometrically fundamental,
more frequent in applications, and less sensitive to inevitable errors in the data.
So, in a certain sense, eigenvalues are answers, not questions.

Let me give an example from my own work. I have recently invented and
used a new formulation of the companion matrix, for polynomials expressed in

1Dare you do this by hand? I did! It’s not so bad if you pick the correct place to expand
about. If you succeed, you will strongly believe the result.
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the Lagrange basis, to develop a new method for finding zeros of polynomials
given just by samples of their values, without first constructing an interpolating
polynomial [7, 10]. Suppose for example that we know a polynomial p(x) is of
degree 3 and that we are given its values at 4 points: at x = [−2,−1, 1, 2] we
have that p = [−3, 2,−1, 1]. Consider the matrix pencil

C0 =




−2 0 0 0 −3

0 −1 0 0 2

0 0 1 0 −1

0 0 0 2 1

1/12 −1/6 1/6 −1/12 0




and

C1 =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0




.

I claim det(xkC1−C0) = yk for 0 ≤ k ≤ 3, and that deg det(xC1−C0) = 3.
That is, by the interpolation theorem, this determinant is exactly the interpo-
lating polynomial for the data. Therefore the finite eigenvalues of this pencil
are the roots of the polynomial, which we have not constructed explicitly.

By Maple, the eigenvalues are

λ = −1.6070196422161, 0.41720813126321, 1.7898115109530 ,

and two at infinity (we started with a 5 by 5 matrix, and the polynomial is
degree 3). The polynomial roots are correct to one unit in the last place, each.

Testing this method on roots of polynomials given by the values either +1
or −1 on the 12th roots of unity (there are 211 such polynomials with different
roots: therefore there are 12 · 211 = 24, 576 possibly different roots) gives the
picture in Fig. 1. The symmetry we observe induces confidence that the answers
are right; moreover, the method computed all these roots in seconds.

The point is that the method would not have made sense to even try, before
eigenvalues were answers, i.e. before technology.

2.3 Special Functions

In the early days of numerical analysis it was predicted that special functions
(such as the error function, the Gamma function, the Riemann zeta function)
would go the way of the dodo, because direct numerical computation and solu-
tion of the relevant differential or difference equations would fill all the needs
for these functions. It hasn’t turned out that way, for a number of reasons, and

6



Figure 1: All roots of polynomials taking on values ±1 at the 12th roots of
unity.

most people who know and love the theory and practice of functions are very
glad. In this case, it is the numerical analysts who have had to reverse their
perspective.

Civilisation advances by extending the number of important opera-
tions which we can perform without thinking about them. Opera-
tions of thought are like cavalry charges in battle—they are strictly
limited in number, they require fresh horses, and must only be made
at decisive moments.
—A. N. Whitehead, Introduction to Mathematics, Williams and
Norgate, 1911

Named functions help scientists to think. This is probably their most impor-
tant role. By carrying a name and having a notation they indicate that there
is a body of known properties (usually internalized into the scientist’s thinking
habits). The exponential function, the sine function, and the logarithm are of
course the simplest examples, and therefore the most useful; but it is surprising
how much of science depends on the shorthand notation offered by functions.

A recent success of computer algebra is the introduction of a notation and
a name for a function that had been in substantive use without a name; the
resulting economy of thought has brought an explosion of applications and new
thinking. I refer to the Lambert W function, surveyed in [8]. This is nothing
more or less than the solution of the transcendental equation

yey = x
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for y, giving (by definition) y = W (x).
My favourite example of an application of this function is the beautiful

paper [20], in which the Lambert W function is used to distinguish between two
models of recovery of the human eye after exposure to brilliant light.

2.4 More on infinite series

In the paper [21], we find the authors advocating the use of conversion of infinite
series to differential equations, and evaluation of the sum by numerical solution
of the differential equation. The problem they seek to avoid goes by various
names in the literature (for example, “the hump”). Work by J. C. P. Miller,
W. Gautschi, and many others, analyzes the problem that the paper [21] is so
concerned about: namely that even convergent infinite series can be difficult to
evaluate.

The simplest example is one that J. M. Varah used (probably original to
G. Forsythe) when he taught me numerical analysis in 1978: the exponential
function. Consider evaluating exp(−30) by using Taylor’s series:

e−30 = 1− 30 +
302

2!
− · · ·+ (−30)k

k!
+ · · · .

Of course, this series is convergent, and, mathematically, the error will be less
than (for example) 10−23 if we omit terms with k ≥ 123 (it’s an alternating
series). It is also numerically useless, because the largest terms, occurring for
k = 30 and k = 31, have magnitude about 7 · 1011; whereas the final answer
must be e−30=̇9.357622969 · 10−14. Therefore, we need about 35 decimal digits
to accurately sum all these terms. Many calculators and computers use the
IEEE-750 standard, with at most 80 bits or 18 decimals of precision. Summing
this series naively using such arithmetic will produce garbage (in 14 digits in
Maple I get an answer of −0.02225302, which doesn’t even have the right sign,
has no digits correct, and isn’t even the right order of magnitude).

“In my experience, it is often wise to use more than n decimal digits
of precision when summing n terms of a series, computing nth-degree
regressions, computing the zeros of an nth degree polynomial, etc.”

—Stoutemyer’s Rule of Thumb

This kind of surprise is explored very thoroughly in [13], where this particular
one is called “the tornado”. The moral that we draw is twofold: first, that
divergence doesn’t always matter computationally (as we saw in the polylog
example), and second that convergence doesn’t always matter computationally
either.

3 Recommendations

These remarks on the inutility of the dichotomy between convergence and di-
vergence as N → ∞, together with our observations that the students don’t
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understand the concept anyway (though they can play the game of deciding
whether this series is ‘nardac’ or whether it’s ‘clumglum’ instead, by turning
the crank on the ratio test, for example [9]), lead me to the most outrageous
proposal in this paper: Infinite series should be pushed out of the calculus
curriculum. Where, exactly, they should be pushed to is another matter.

Infinite series are good for demonstrating the existence of solutions; the
notion of convergence has some applications in other areas, albeit rather fewer
than a classically-trained mathematician might think. But in my opinion these
benefits are not enough to warrant spending so much time in our courses on,
especially in comparison with more obviously worthwhile topics, such as basic
numerical analysis.

Truncated series or polynomials, on the other hand, have a definite place:
polynomial approximation plays a huge role. This brings up my second opinion
(doubtless less controversial): More about polynomials should be taught. An
excellent source of material at the senior high-school or entering university level
is [3]. I recommend, in addition to material more commonly taught now (such as
the fundamental theorem of algebra), that the cubic and quartic formulae, the
nonexistence of radical formulas for general polynomials of degree 5 or higher,
polynomial interpolation, resultants and other connections to matrices, perhaps
other polynomial bases (such as the Lagrange basis, the Chebyshev basis, and
others), and much more all be taught.

I make this recommendation, even though polynomial rootfinding is done
nowadays by the more useful and fundamental eigenvalues! The idea is that
polynomials are accessible, and a natural route to eigenvalues; the reversal isn’t
so painful, really. Polynomials in and of themselves have tremendous applica-
tions (particularly in computer-aided geometric design), and burgeoning theory
in the multivariate case, since the invention in the 1960’s by Buchberger of a
method to convert a given polynomial problem to one more easily dealt with,
i.e. a Gröbner basis. I note that in the past decade it has been realized that
eigenvalues are a vital tool for solving multivariate systems, too—analysis finds
commuting families of matrices that have a common eigenstructure, and this is
a good (possibly the best) way to solve the systems, once expressed in a Gröbner
basis.

Probably my most important recommendation is to include numerical anal-
ysis in the curriculum. It isn’t hard, when you stick to the two principles:

I. A good numerical solution gives you the exact solution to a nearby prob-
lem.

II. Some problems are sensitive to changes.

Checking how near the problem solved was is easy. For example, you plug in the
computed root (or computed solution of the linear system) and see what’s left
over. This brings me to my fourth recommendation: teach the students to check
their results. This is a part of numerical analysis, of course, but it is a keystone of
using technology properly: we wish to avoid “Garbage in, Gospel out”. Example
areas: numerical integration, numerical solution of linear equations, numerical
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solution of nonlinear equations, the FFT, the singular value decomposition.
See [5, 6] for detailed examples.

The second principle of numerical analysis is a marvelous excuse to work
on derivatives. It has the added benefit of being necessary for scientists and
engineers anyway: they have to study how sensitive their models are to errors
in the input data.

I have other recommendations: minimize the optimization application of
derivatives (sure, teach the students that the derivative is zero or nonexistent
at an optimum, but let them graph it to see whether it’s a max, min or saddle);
lower the number of integration techniques taught (but keep memory and partial
fractions; the first for efficiency but also mental health, and the second for
applications such as in control theory). This allows concentration on integral
formulation (i.e. modelling, aka reductionist thinking), surely a better way to
spend one’s time in possibly the only mathematics course one ever takes.

“No proof without doubt.” —E. J. Barbeau

“I have absolutely no interest in proving things I know are true.”
—H. J. Abarbanel

My final recommendation is to replace proof with programming. Program-
ming encourages and strengthens the same kind of thinking as does proof: preci-
sionist grade, covering all the bases, breaking the problem up into small bits and
putting them together. See the opinions of Doron Zeilberger on his home page
(he points out that programming is just as much fun as proving, and even more
so). As an extra benefit, classic principles such as induction become valuable
tools for proving program correctness, with loop invariants. These applications
have much greater immediacy for students than proving mathematical facts.
They also have the advantage of being harder. . . and, when you relent and ask
them to prove something simple about a mathematical formula by induction,
they may view the exercise as being valuable!

My best example of shifting out proof is the way I teach the fundamental
notion of continuity, and the equivalently fundamental notion of limits. I teach
limits by means of continuity: I declare (“I tell you three times, and what I tell
you three times is true.”) that certain functions are continuous (polynomials,
the exponential function, the sine and cosine function, and the logarithm away
from x < 0 (and even there if limits are taken only horizontally)). Then they
may use the definition of continuity limx→a f(x) = f(limx→a x) = f(a) to “play
the game” of evaluating limits by using the rules for sums, products, and division
(which is the first one where they have to check). No proofs are involved: they
simply play the game. This is the way the game is played in all calculus courses,
anyway, no matter what the instructor may think. I just make the rules explicit.

I don’t waste their time (or mine) trying to prove the rules, or to prove
that the basic functions are continuous (after all, I don’t even give them the
ε–δ definition). I do use computation to evaluate some limits numerically:
limx→0(ex−1)/x, limx→0 sin(x)/x, and limn→∞(1+x/n)n for numerical x from
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which they are expected to induce that the limit is ex (this requires careful tim-
ing: if they see an example with n so large that 1 + x/n rounds to 1, then the
computation gives 1 as the answer—and displacing that incorrect but oh-so-
plausible answer is a job and a half, let me tell you).

Don’t get the impression that I am against rigour: far from it. For example,
when I teach complex numbers, for example, I absolutely do not start with the
false-to-fact “Let i be the square root of −1”. They know very well that there
is no such number. This type of false supposition can lead to total confusion, or
a bankrupt pragmatism on the part of the student. The same type of reasoning
leads to contradictions, such as Perron’s paradox: “Let N be the largest integer.
Then if N > 1 we would have N · N > N · 1 or N2 > N , a contradiction.
Therefore N = 1.”

Instead I define (as Gauss did) multiplication of number pairs, show that
(0, 1)2 = (−1, 0), and therefore define i = (0, 1). This is the way the HP
calculator does it (as does Maple internally). Rigorous, but concrete: there is
no argument, and the process is totally convincing. Students should learn rigour
by example as well as by precept.

Students are expected to use complex numbers in a seamless fashion; they
are expected to “play the game” of evaluating limits by using continuity; and
they are expected to write and understand small programs for the evaluation
of finite sums such as are used in quadrature: left hand Riemann sums, right-
hand Riemann sums, the midpoint rule, and the trapezoidal rule. We analyze
the error behaviour by showing that for monotonic functions, the left and right
hand finite Riemann sums bound the true answer on either side; and for convex
functions that the midpoint and trapezoidal rules bound the true answer on
either side; and the students are very easily convinced in a concrete fashion by
experimentation that they may get better (more accurate) answers by taking
more subdivisions. This is the beginning point for infinite series, and for anal-
ysis: it is my opinion that no more than this should be seen in a first course.
The technical and philosophical details, together with the hard inequalities and
analysis, should be left for a later course.

4 Concluding remarks

We have taught calculus with technology since 1988. Our students are taught
the following ‘Three Laws’ of equipment use:

1. Any tool should always be used to expand the user’s capabilities, and not
as a crutch to prop up weak skills.

2. One must be smarter than one’s equipment, knowing its limitations thor-
oughly.

3. A piece of equipment is not a substitute for thought. The user will always
be responsible for what is going on, even if the details are carried out
‘under the hood’.
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These laws do not depend on particular hardware or software: they are rules
for computer-mediated thinking.

Finally, calculus has unintentional power [15]. Changing this basic piece of
curriculum affects all subsequent courses, and a significant portion of the ed-
ucated populace, and it’s hard to predict just how the effects will show up. I
would like to think of the recommendations in this paper as a starting point
for discussion. Something has to give, if we add more material to the cur-
riculum; something has to go. My vote is for series, though I am sure I have
not anticipated all effects. I have thought about the fact that this is the first
place students see infinity2, and that (at some point) they have to argue about
whether 0.99999 . . . is equal to 1 or not. Series is also the first place that they
manipulate integer-valued functions (the formulae for the nth terms). It is the
second place that they work with inequalities (the first is in the classical treat-
ment of limx→0 sin(x)/x, which I have also removed). Removing series from
the curriculum will have side-effects, that they have less practice with infinity
and with inequalities. I am prepared to accept them, because I believe that the
material I have replaced it with has as many benefits, and some greater.

One of the most useful (and invisible) effects of calculus has been to encour-
age reductionist thinking (one of the most successful ideas ever). This happens
when people formulate integrals (in sections typically called “applications of
integration”, which can degenerate into formula memorization but in skilled
hands does not). Calculus also encourages linear precisionist-grade thinking,
clear-edged logic, clarity and economy of hypotheses, and constructivist think-
ing, which the approach of this paper encourages further. Calculus also gives
students a chance (and a reason) to acquire algebraic fluency, without which
they are unable to succeed in subsequent courses. “I never used that stuff
again”—a common quote, but dead wrong. Calculus affects how people think.

Now it has changed.
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