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Abstract 
 
The paper deals with the proper generation of primes for RSA and other cryptographic purposes. It 
turns out that there are a number of pitfalls which should be avoided. In particular, the randomness and 
the unpredictibility of the generated primes is definitely a key issue when it comes to the proper 
implementation of a public key cryptosystem based on them. Furthermore, primes with certain special 
properties pose a security problem. It is shown how “safe” primes can be generated using DERIVE. 
 
1. Introduction 
 
I will assume that the reader is already familiar with the principles of public key cryptography (cf. e.g. 
[1],[2]). Even though, I will put together some basic facts in the following in order to introduce some 
notations. Basically, public-key cryptography involves the use of two keys: 

• a public key, which is widely available as its name says, and can be used to encrypt messages and 
verify signatures 

• a private key, known only to the recipient, that is used to decrypt messages and sign signatures 

The generation of these keys makes use of a so-called trapdoor function, i.e. a one-way function 
f:X→Y with the additional property that given some extra information it becomes feasible to find for 
any y∈ Im(f) an x ∈X such that f(x) =y. 

The public key gives all the information to compute the values f(x) for any x ∈X, whereas the private 
key gives the extra information for computing the inverse images. Given these pieces of information 
all computations should be possible in polynomial time. 

To make things simpler I will only refer to the most widely used public key cryptosystem RSA in the 
following, although some of the subsequent considerations apply also to others, where primes are used 
(e.g. the ElGamal cryptosystem). Here, the trapdoor function has the form 

f: {0,1,..n -1} → {0,1,..,n - 1} 

             x ex  mod n 

where n is the product of two „big“ primes p and q of roughly the same size. Furthermore, e is an 
integer in the interval (1, ν ) with ν =lcm(p-1,q-1) such that gcd(e, ν )=1. (Note that in the “classical” 
RSA as introduced by its inventors, ν = (p-1)*(q-1) is used instead, which works as well, but is not 
optimal as pointed out in [2].) 

The latter condition ensures that the mapping 

f*: {0,1,..n -1} → {0,1,..,n - 1} 

             x dx  mod n 

where d∈(1, ν ) and de ≡ 1 mod ν , is inverse to f. 

Here f is used for encryption and f* for decryption. Hence, it should be clear that the public key of 
RSA consists of the pair (n,e), whereas d is the private key. (The primes p and q are no longer needed 
and should be destroyed!) The computation of d can be done in O( 3n ) time using the extended 
Euclidean algorithm by anyone who knows the factorization n=p*q. e can be small (even e=3, if 
„salting“ of messages is used), whereas d should be large to be safe. (If d has up to 1/4 as many bits as 
n then the so-called Wiener attack will be successful, which uses convergents of the continued 
fraction for e/n, cf. [2]) 



Basically, any attacker faces the so-called RSA-problem: Given n and e as above, for any integer 
c∈[0,n) he must be able to solve the congruence 

                        ex  ≡ c mod n 

If he can factor n though, the RSA-problem can be easily solved as well (via the computation of d). 
Hence, the RSA-problem is at most as hard as the so-called integer factorization problem. It is 
widely believed, though not proven, that these two problems are actually computationally equivalent. 

The checking, whether a given k-bit prime (where k=512 or greater for RSA) is prime or not is very 
fast and can be done in O( 3k ) time using probabilistic methods (usually by carrying out a fixed 
number of Rabin-Miller tests as this is also done by Derive internally, cf. [3]) 

A far bigger problem is to provide truly random primes of the desired size, e.g. with about 512 bits, 
which is a very common size nowadays. In particular, a generation of such a prime p like  

   p:= next_prime(random(2^512)) 

should not be used for “serious applications” as is shown in the following. 

2. What is wrong with p:= next_prime(random(2^512)) ? 
Basically, in order to get a random number with at most 512 bits using random(2^512) Derive 
performs the iteration   

s:=2654435721·s + 1 mod  322  

16 times starting with a 32-bit random seed s and concatenates all resulting 16 values of s (in binary 
representation). In the following Derive demonstration rand(s) emulates the generation of a random 
number with 32k bits (where k=16 by default) using the 32-bit seed s.  (As for the details see also the 
online help for random(n).) 
rand(s, k ≔ 16) ≔                              
  Prog                                         
    s ≔ MOD(2654435721·s + 1, 2^32)            
    Loop                                       
      k :- 1                                   
      If k = 0                                 
         RETURN s                              
      s ≔ 2^32·s + MOD(2654435721·s + 1, 2^32) 
 
rand(123456789) =     
4691316366827009197075601627551745078709173908110846217284795267025817570550446537761361
026116307661187082508174693319565556158953475143046323855133761893 
 
                               RANDOM(-123456789) = 123456789 
        512  
RANDOM(2   )= 
4691316366827009197075601627551745078709173908110846217284795267025817570550446537761361
026116307661187082508174693319565556158953475143046323855133761893 
 
Hence, this naïve approach                                    

p ≔ NEXT_PRIME(2 ^512 ) 

will produce only 
 
                                32                  9 
                        APPROX(2  ) = 4.294967296·10  
 
different primes out of a total of about 
 
                                          2^512                                
                                         ⌠         1                       151 
                                   APPROX       dt = 3.788726978·10    
                                         ⌡       LN(t)                         
                                          2                                    



 
512-bit primes. Furthermore, all these 4.3 billion primes can be easily generated as shown above and 
therefore when using two of those primes for RSA a simple brute force factoring attack is highly likely 
to be successful within a few hours!!! 

If you need  512-bit random numbers for genuine cryptographic applications then  I recommend to 
concatenate the 4 least significant bits of the time between two keystrokes until you have the requested 
number of bits. In more dertail, this can be accomplished by first inputting the following two lines 
s ≔ 0 
FLOOR(LOG(RHS(s ≔ 16·s + MOD(RANDOM(0), 16)), 2) + 1) 

(by the way, I am indebted here to Albert Rich for pointing out a slight improvement of my original 
approach which you can still see in the attached file on the CD) and by repeatedly simplifying the 
second line by clicking with the mouse on the “=” icon to left of the input line until s has the desired 
bit length. (Note that the current bit length of s is shown on the screen while clicking!) In order to get 
“good” randomness, don’t make more than say 3 mouse clicks in a second, though,  and avoid any 
“rhythm”. To get a 512-bit random number you have to click 128 times, it is true, but even though this 
should not take longer than say 1 minute! After all, this has to be done only once, namely when setting 
up of your public key cryptosystem, so it surely pays off in terms of security! 

This procedure has two advantages. First, it will yield all 5122 numbers of bit length 512 and not only a 
tiny subset of size 322 . Second, the bits are much unpredictable and have good random properties. To 
test the latter statement I have implemented some popular statistical test such as e.g. the poker test and 
the runs test. Here is a short description of the poker test (see [1], also for the other tests). For all these 
test the decimal number s must be converted into a binary vector t of length 512 before, which could 
be done by the assignment 

t ≔ VECTOR((SIGN((2^k AND s) - 1/2) + 1)/2, k, 511, 0, -1) 

Let m be any positive integer such that for k:=[n/m] the condition k≥5* m2  holds. Now, divide the 
sequence s in k non-overlapping parts of length m. The poker test checks then, whether they occur 
with approximately the same frequency. If in denotes the number of binary strings of length m, whose 
conversions into a decimal number are exactly i for  some i∈{0,1,.., k2 -1}  then  

X= m2 ( 2
0n +…+ 2

1k^2n − )/k –k 

approximately follows a 2χ  distribution  with m2 -1 degrees of freedom. The program PokerTest(u,m) 
on the CD computes the second P-value for a given binary vector u and a given block length m. For 
good randomness it should be as high as possible. If it is however below a given significance level 
α of say α =5%  (or even α =1%),  then the binary vector has surely failed the randomness test! In my 
examples  this was far from being the case though! 
 
3. Other pitfalls as to the form of the primes 
 
The primes used in RSA should be so-called „strong primes“, which can be generated by Gordon‘s 
algorithm (cf. [1]). A prime number p is called a strong prime, if 

 p-1 has a large prime factor r 
 p+1 has a large prime factor s 
 r-1 has a large prime factor t 

Here, the first two conditions will give protection against two factoring methods, viz. Pollard‘s p-1 
method and Williams‘ p+1 method, respectively, which are highly efficient if those conditions are not 
fulfilled, whereas the third condition is the „antidote“ as to the so-called „cycling attack“ of RSA. (For 
this attack one has only apply the encryption a relatively small number of times to the cipher text to 
get the plain text,) 
 
 



gordon(s, t, i_ ≔ 1, j_ ≔ 1, p_, r_) ≔ 
  Prog                                 
    Loop                               
      r_ ≔ 2·i_·t + 1                  
      If PRIME?(r_) exit               
      i_ :+ 1                          
    p_ ≔ 2·MOD(s^(r_ - 2), r_)·s - 1   
    Loop                               
      p_ :+ 2·j_·r_·s                  
      If PRIME?(p_)                    
         RETURN p_                     
      j_ :+ 1                          
 
                          246   
   s ≔ NEXT_PRIME(RANDOM(2   )) 
 
   s ≔ 70210900847315481556299191493887135153105616220341627030022047210735359591 
 
                          246   
   t ≔ NEXT_PRIME(RANDOM(2   )) 
 
   t ≔ 78122574589039412021027602126021268318404289762560352364297558544835631449 
 
   p ≔ gordon(s, t) 
 
   p ≔         
1037770967767059056916416582406246532666687475579663248988671538837743003554757139006338
52062093239208766875295626467204694667199175062407840883929161424041 
 
The generated prime p has slightly more bits than s*t. Furthermore p+1 is divisible by s and p-1 is 
divisible by a big prime of roughly the size of t. 
 

FLOOR(LOG(s·t, 2) + 1) = 491 
 

FLOOR(LOG(p, 2) + 1) = 515 
 

MOD(p + 1, s) = 0 
 
  ITERATE(IF(MOD(p - 1, t_) = 0, t_, t_ + 2·t), t_, 2·t + 1)= 
 
  27342901106163794207359660744107443911441501416896123327504145490692471007151 
 
Now let's create advertedly  "unsafe" primes just to see what happens. The following routine will 
create a prime q with about n bits, such that q-e with e in {1,-1} has only prime factors with at most s 
bits. 
 
      unsafe(n, s, e ≔ -1, r_ ≔ 1, p_) ≔      
        Prog                                  
          Loop                                
            r_ :* NEXT_PRIME(RANDOM(2^s))     
            If FLOOR(LOG(r_, 2) + s) ≥ n exit 
          p_ ≔ 2·r_ - e                       
          Loop                                
            If PRIME?(p_)                     
               RETURN p_                      
            p_ :+ 2·r_                        
 
      q ≔ unsafe(512, 16) 
 
      FACTOR(q - 1) 
 
     q ≔  
        
7412086308680915919188982332449416283785874137603168047732406555392287036631887013427084
304438566801516645987511289983913577286753303839314392849665881441 
      n ≔ p·q 
 
      DIM(n) = 309 
 
     FACTOR(n) =  



7412086308680915919188982332449416283785874137603168047732406555392287036631887013427084
304438566801516645987511289983913577286753303839314392849665881441        
·103777096776705905691641658240624653266668747557966324898867153883774300355475713900        
633852062093239208766875295626467204694667199175062407840883929161424041 
 
Using the "unsafe" prime q the 309-digit number n=p*q was factored in only 46.6s on my PC! Note 
that both Pollard‘s p-1 method and Williams‘ p+1 method are part of the factoring strategy of Derive’s 
factoring algorithm, which you can also see by choosing the “display step” mode from the tool bar 
 
As a rule of thumb, the factorization problem is hardest, if the two primes p and q are roughly of the 
same size. Strangely enough, the case where p and q are very close to each other must be avoided 
though by all means, as Fermat‘s factorization method is highly efficient otherwise. It makes use of 
the fact that there is a bijection between any two representations 

 n=a*b with a≥b>0 and n= 2u - 2v with u>v≥0  

using u=(a+b)/2, v=(a-b)/2 and a=u+v, b=u-v, respectively. 

The details of the algorithm can be seen from the program below. It is given here only for didactic 
reasons, as Fermat’s factorization has also be added to Derive’s bundle of factoring strategies since 
version 6.01. By the way, the 243-digit number n below has actually been used by an Austrian 
criminal who was was in the bad habit of sending letter bombs to people he didn’t like before he was 
finally caught. 
 
      fermat(n, u_, v_) ≔                  
        Prog                               
          u_ ≔ CEILING(√n)                 
          v_ ≔ u_^2 - n                    
          Loop                             
            If INTEGER?(√v_)               
               RETURN [u_ - √v_, u_ + √v_] 
            v_ :+ 2·u_ + 1                 
            u_ :+ 1                        
            If u > (n + 9)/6               
               RETURN [1, n]               
 
n ≔         
6305482150701295471567183324958896322344341454119712758883769876032602252527879261352767
3894410568910003629553586814142438653640364957870769912818949143213863190059077472921499 
0015369102760964884776344849717811484309528915040117952098061886881 
 
fermat(n) =  
[251107191269013549761909333958671246802408057112768448862509598241562051889494061847352
95788387561135167529430243075948799,  
2511071912690135497619093339586712468024080571127684488625095982415620518894940618473529
5788387561135167529435118429780319] 
 

Another threat comes from the fact that the encryption mapping of RSA, viz. x ex  mod pq, has got 
a number of fixpoints, i.e. points which will be mapped onto themselves with any encryption! It is 
easy to see that the number of fixpoints is at least 9. More precisely, one can easily compute the exact 
number of fixpoints using Derive by inputting the formula 

 (1+gcd(e-1,p-1))(1+gcd(e-1,q-1)) 

as it is.  

Note that the nontrivial fixpoints x≠-1,0,1 must be kept secret by all means, as gcd(x,n) is one of the 
primes p or q. Hence, in order to keep the number of fixpoints at its absolute minimum 9, the primes p 
and q are sometimes chosen such that (p-1)/2 and (q-1)/2 are also primes. In practice, this is no real 
security risk though, as the probability of an x chosen at random to be a fixpoint is virtually zero. 
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