
1

Pedagogical Uses for Symbolic Algebra in a Numerical Analysis Course

Dr. Dennis Pence
Western Michigan University
Department of Mathematics

Kalamazoo, Michigan USA 49008
dennis.pence@wmich.edu

Abstract: It is very easy to think that a numerical analysis course will use a computer or cal-
culator for only numerical computations. Certainly that is a major emphasis of the course.
However there are many opportunities to make use of symbolic algebra in the derivation and
analysis of numerical algorithms. I will use the Voyage 200 to demonstrate some of these
topics. I tend to prefer the Voyage 200 for my in-class demonstrations because of how easy it
is to carry this handheld device and the viewscreen into my classroon (which has no other eas-
ily available technology). Similar things can be done on any CAS, and my students often go
to a computer lab to complete assignments that involve symbolic mathematics.

Here is one example. I had a high school student doing some independent reading on poly-
nomial interpolation. On a TI-89, he programmed the standard algorithms for computing the
divided difference table and then for evaluating the polynomial in the Newton form. Nor-
mally the input for the evaluation routine is the floating-point number desired for x in the
evaluation of p(x). However when he ran the routine with a symbolic x, he got the symbolic
form of the polynomial. There are many other symbolic tasks related to polynomial interpola-
tion that can be explored at the same time you are presenting the numerical algorithms.

Polynomial Interpolation
Consider the problem of finding the polynomial p(x) of degree at most (n – 1) that interpolates given
data of the form { }1 1 2 2(,), (,),..., (,)n nx y x y x y . We need only assume that the nodes {xi, i = 1, 2, ..., n}

are distinct. Generally the second coordinates {yi, i = 1, 2, ..., n} represent the evaluation of some un-
known function ()f x , i.e. ()if x = yi for i = 1, 2, ..., n. Even though we simply ask for the polynomial
to exactly match the function at these nodes, we hold out the hope that the polynomial p(x) will ap-
proximate ()f x well in between the nodes (and sometimes even extrapolating beyond the nodes).

The standard process is to represent the polynomial in the Newton form.

 1 2 1 3 1 2 1 2 1() () ()() ... ()()...()n np x a a x x a x x x x a x x x x x x −= + − + − − + + − − −

The coefficients {ai;i = 1, 2 ,..., n} can easily be computed using divided differences. Here is a
Voyage 200 program to do this coefficient computation and another to evaluate the resulting polyno-
mial at some value t. A standard reference for these alorithms is Cheney and Kincaid, Numerical
Mathematics and Computing, 2nd Ed., Brooks/Cole Publishing Co., 1985, p. 117.

Voyage 200 Program: coef(x,y)

Func
 Local i , j ,a ,n
 d im(x)→n
 For i ,1 ,n
 y [i]→a[i]
 EndFor
 For j ,1 ,n–1
 For i ,n , j+1, -1
 (a [i]–a[i -1]) / (x [i]–x[i - j])→a[i]
 EndFor
 EndFor
Return a
EndFunc

Voyage 200 Program: eval(x,a,t)

Func
 Local i ,n ,va l
 d im(x) →n
 a [n]→val
 For i ,n–1,1, -1
 va l∗ (t -x [i])+a[i] →val
 EndFor
Return va l
EndFunc

2

As an example, we will consider the Runge function 2

1()
1

=
+

f x
x

 on the interval [–5,5] using nodes

equally-spaced at the integers {–5,–4,–3,–2,–1,0,1,2,3,4,5}.

 y1(x) = eval(xx,aa,x)

This is a famous example of how bad polynomial interpolation can be. However, when I had a high
school student (doing independent study) work through his material and write these programs, he did
something I had not anticipated. He ran the program eval(xx,aa,x) in the HOME screen to actually
look at the polynomial.

Notice that all of the data values are exact rational numbers, so the coefficients were computed ex-
actly, and we can get an exact polynomial. Here it is interesting that the data was from an even func-
tion, our nodes are symmetric about the origin, and the resulting polynomial is exactly even. We al-
ways tell our students that they are getting an evaluation of a polynomial, but of all their previous ex-
perience with polynomials makes them want to see an exact representation as above before they truly
believe you are working with a polynomial. Here you can highlight this formula in the history, copy it,
and paste it into y2(x) to confirm that it gives the same graph.

Just to finish this example, most texts show other patterns for the nodes here can do better than equal
spacing. The Chebyshev nodes (or scaled translations) do nicely here.

Here the symbolic polynomial has numerical approximations for coefficients. Still we can see that the
odd-powered terms have very tiny coefficients (which are virtually numerical zeros).

3

Numerical Derivatives
The Voyage 200 offers two different numerical derivative approximations (in addition to symbolic
differentiation). It is nice to show these symbolically using an unknown function.

Taylor Polynomials
Much of the error estimation in a rigorous numerical analysis course is based upon Taylor polynomial
approximations with remainder. The fact that we can quickly get an exact Taylor polynomial is very
convenient.

Numerical Integration
Since Riemann sums, the trapezoid rule, and Simpson´s rule are covered in the standard calculus se-
quence, a numerical analysis course needs to do a little more. At the very last it needs to strive for a
deeper understanding of these elementary techniques. Eventually you should do some comparison
with the internal routine for doing numerical integration (which is adaptive). The symbolic part might
be in the derivation of some rules. The following was partly prompted by a discussion with a geology
professor on our campus. He complained that students coming to him did not know how to integrate.
I´ve done enough consulting to know to follow up with a few more questions. Was his integrand a
discrete function? (Yes). Was his discrete data equally spaced? (Usually.) Seldom does a Calculus 2
student get asked to “integrate” a discrete data set which is not equally spaced.

Supppose we are given discrete data { }1 1 2 2(,), (,),..., (,)n nx y x y x y where presumably ()i iy f x≈ for

i = 1, 2 ,..., n. We can generally assume that the x-values come in increasing order 1 2 ... nx x x< < < .

We desire to approximate ()
b

a
f x dx∫ where usually a = x1 and b = xn. If you have already done poly-

nomial interpolation, then one thing you could do is to integrate the interpolation polynomial instead.
However we just saw with the Runge function how far the polynomial might be from the function.
Actually this works better than you might think because integration is an averaging process. For n
greater than 10 or 15, this is not practical.

First you can start out reminding students that the partition for Riemann sums did not need to be

equally spaced.
1

1
1

()
n

i i i
i

L y x x
−

+
=

= −∑ gives a left-endpoint sum and
1

11
1

()
n

i i i
i

R y x x
−

++
=

= −∑ gives a right-

endpoint sum. Since there is no way to evaluate the function anywhere else, there are really no other
Riemann sums to consider. The trapezoid rule also works over a partition that is not equally spaced

(although it is seldom mentioned in calculus texts). Thus
1

11
12

1

() ()
2

n
i i

i i
i

y yT L R x x
−

+
+

=

+
= + = −∑ ap-

proximates the integral by trapezoids with differing widths. The fun comes when we try to use some-
thing like Simpson´s rule (which does critically depend on equal spacing and an odd number of
evaluations).

4

We use the symbolic capabilities of the CAS to derive a “parabola rule” for a data set with three en-
tries 1 2 3{(,),(,),(,)}c f c h f c h k f+ + + . First we find the interpolating quadratic polynomial, and then
we integrate it over subintervals. Here we use the two programs from above.

Just to check, we add the two integrals and look at the special case where k = h to rederive Simson´s
rule.

We now have something that we can do that is “Simpson-like” for data that is unequally spaced and/or
for when n is not odd. Assuming n ≥ 3, we apply the parabola rule on the beginning of the data set
{ }1 1 2 2 3 3(,), (,), (,)x y x y x y . Note that we do not need to type the “nasty” formula above in the program

we are creating. When we need that formula, we can go to the history and copy the formula. Then we
move to the program editor and paste in the formula. We continue to take two more data pairs to get
another term to add to what we have accumulated thus far. When n is odd, this will work fine and we

finish with full piecewise parabola intervals. There we approximate
1

()n

n

x

x
f x dx

−
∫ by taking the integral

over this subinterval of the quadratic polynomial interpolating { }2 2 1 1(,),(,),..., (,)n n n n n nx y x y x y− − − − .

Of course this “parabola rule” does not, in general have the same error properties as Simpson´s rule
(the equal spacing is important in the error analysis). However for equal spacing and n odd we actually
get Simpson´s rule in the above program.

	toabstr:

