
1 A.Marlewski

Text presented in the ACDCA conference "Recent research on DERIVE/TI-92 supported mathematics education" in Goesing (Austria), 25-27.August 1999

Linear discrete least-square fitting assisted by CAS

Adam Marlewski
Institute of Mathematics, Poznañ University of Technology,

ul.Piotrowo 3a, 60-295 Poznañ, Poland; e-mail: amarlew@math.put.poznan.pl

Abstract. Least-square approximation is commonly used technique generating the best fitting to given
function or to given set of points. This paper deals with the last case where the task may be reduced to
solving a system of linear equations. Besides the polynomial and polynomial-reduced approximations
there is considered in details a rational fitting where some traps appear (and for this reason it is called
a problematically linearisable fitting). There is discussed the efficient assistance of a computer algebra
system to the best fitting tasks, in particular definition of appropriate functions in DERIVE are given.

Key words: computer algebra systems, linear algebra, math education

1. General on the least-square fitting
Least-square fitting is one of the most popular approximation technique ([Akai], [Burden], [Chapra],
[Scheid], [Venit]), so we recall it very briefly here. It is applied in both discrete and continuous cases, i.e.
when there are given some points or there is given a function to be approximate by an (other)
approximating function.
In the discrete approximation problem discussed in this paper we want to determine a function F which
graph passes as close as possible to given n+1 points (xk,yk), k=0,1,...,n, of the real Cartesian plane Oxy.
In aim to solve this problem we need to precise which is the form of the approximating function F and
what does the best fitting mean.
If we opt for the function F being the polynomial in variable x, then we have so called polynomial
approximation. Now the coefficients of a polynomial are to be determined. Thus if we act within the class
of polynomials of degree up to m (i.e. we look for the polynomial of degree m), m+1 coefficients
c0, c1, ..., cm are to be found. Obviously, the uniqueness of the solution requires m≤n.
We talk about the least-square approximation (LSA) if the best fitting is defined via the minimisation of
the following quantity (called the standard deviation or least-square error):

(1) { }2

k k
0

1
Q: F(x) y

1

n

kn =

= ⋅ −
+ ∑

So the deviation Q measures the average difference between given points (xk,yk) and the points (xk,F(yk))
laying on the approximating curve. We look for such function F for which the deviation Q is smallest
possible.
Differentiating the quantity Q (or, to simplify the notations, the expression (n+1)/2⋅Q2) with respect to
unknown coefficients of the form F gives (by the Theorem on Extremes of a differentiable function) the
following resolving system

(2) { } k
k k

0

(x)
F(x) y 0

n

k j

F

c

∂
∂=

− ⋅ =∑ , j=0,1,...,m .

Equations forming this system are commonly called normal equations of LSA.

2. Linear least-square approximating

In polynomial case, i.e. when F(x) = c (x)j
j=0

m

bj∑ , where bj(x) stays for j-th a priori fixed polynomial of

degree exactly j, the resolving system takes (after simple rearrangement of the summation) form

2 A.Marlewski

(3) < > ⋅ = < >
=
∑ b b c y bi j
i

m

i j, ,
0

, i=0,1,...,m,

where the symbol <g,h> stays for the inner product of functions g and h upon the points {x0, x1, ..., xn),
i.e.

(4) < > = ∑g h g, : (x)h(x)k k
k=0

n

,

and y(xk):=yk.
The resolving system (3) is composed of linear equations, so the task consisting in determining the
coefficients c0, c1, ..., cm reduces to solving this system which can be rewritten in the matrix form as
follows
(5) S⋅c = r,
where c:=[c0, c1, ..., cm]T, S:=PT⋅P, r:=PT⋅y, P:=[bj(xk)].
By Gram Theorem the matrix S is non singular, so the system (5) provides the unique solution c.
The work with the function F(x):=a+b·xc , where a, b and c are unknown coefficients, shows that no every
approximation problem can be reduced to solving a system of linear equations. A problem which can be is
known as a linearisable fitting.
There are always linearisable least-square approximation problems with the approximating function F
being any linear combination of linearly independent functions bj. Here we can take, for instance, Stevin
(or standard, natural) basis, the standard cosine basis and Chebyshev basis, where bj(x):=xj-1,
bj(x):=cos(x), bj(x):=Tj(x), bj(x):=Gj(x), respectively (Tj(x):=cos(j⋅arc cos(x)) defines j-th Chebychev
polynomial of first kind, Gj - the j-th polynomial of the Gram orthogonal system built on the abscissas
of given points; for definition of these polynomials defined on the regular mesh see e.g. [Ralston], the
arbitrary case is presented e.g. in [Blum], [Jankowscy]).
There exist functions F, different from linear combinations of some basic functions, which let to reduce
the problem to solving a system of linear equations. Unfortunately, not always the resulting system
provides the solution we looked for. That's why we have to distinguish two kinds of linearisation:
a perfect one and a problematic one.

3. Perfectly linearised least-square fitting
We talk about the perfectly linearisable least-square fitting if it reduces (or can be reduced) to the
resulting system (5) providing the coefficients c for which the best approximation is realised. Examples of
such problems are that with the approximating function G of form, for instance,
(6) G(x):=exp(c0+c1⋅x+...cm⋅xm), G(x):=a⋅xb.
In first case it is enough to apply the inverse functions to pass to the functions

F(x):=c0+c1⋅x+...cm⋅xm with F(x):=ln(G(x)),
and to deal next with points (xk, ln(yk)).
Treating the second case, we represent

G(x)=eln(a)⋅eb⋅ln(x)=eln(a)+b⋅ln(x),
and it permits to work with the approximating function

F(x):=c0+cj⋅x with F(x):=ln(G(x)), c0:=ln(a), c1:=b
and transformed data points (ln(xk), ln(yk)). By the way let's say that we reduced our fitting to the classical
regression problem (see e.g. [Eide], [Sobol]).

3 A.Marlewski

4. Problematically linearised least-square fitting
Differently than in perfectly linearisable fitting, in this approximation the formal transformations reduce
the approximation task to the resolving system, but not always it provides the searched result. A typical
situation of this case holds with rational fitting, where we seek a function of the form, let's say,

(7) G

a x

z x
pq

j
j

j

p

s
s

s

q, (x):= =

=

∑

∑
0

0

with a priori fixed degrees p of the nominator a0+a1⋅x+...ap⋅xp and q of the denominator zj+zj⋅x+...zq⋅xq. In
the sequel we consider essentially rational functions, i.e. we assume q>0 and zq≠0. No generality is lost
when we set zq:=1. To simplify the description of the problem we restrict ourselves to p=q=1, so we
discuss the (1,1)-rational approximation, i.e. within the class composed of functions of the form

(8) G
a x

b x
(x):

a0= + ⋅
+
1

0
.

Multiplying both sides of (8) by the denominator we get the relation
 a0+a1⋅x−G(x)⋅b0=x⋅G(x).
Thus we have
(9) c0+c1⋅x+G(x)⋅c2=F(x)
where we denoted

F(x):=x⋅G(x),
c:=[c0, c1, c2]T := [a1, a0, −b0]T.

Proceeding in the analogous way as before we take the quality function

{ }2

0 1 2
0

1

1

n

k k k k
k

Q c x c c y x y
n =

= ⋅ ⋅ + + ⋅ − ⋅
+ ∑

and we find that the coefficients c0, c1, c2 have to satisfy the system (5),
where

(10) P:=

0 0

1 1

1

1

1n n

x y

x y

x y

! ! !
, y:=

0 0

1 1

n n

x y

x y

x y

⋅
 ⋅

 ⋅

!
.

Thus the coefficient matrix S and the free term vector of the system (5) are

(11) S =

2

2

1
k k k k

k k

k k k k

x x x y

x n y

x y y y

+

∑ ∑ ∑
∑ ∑
∑ ∑ ∑

, r =

2

2

k k

k k

k k

x y

x y

x y

 ⋅

⋅
 ⋅

∑
∑
∑

where the summation is expanded for k = 0, 1, ..., n.
This is not evident which composition of given numbers xk, yk results in the system (5) having an unique
solution or being inconsistent (the conditions det(S) ≠ 0 and rank(S) ≠ rank(S r), respectively).
Surprisingly, there is here even one more case: the system has a solution which can not be accepted.
All three cases are illustrated with data composed of 4 points having abscissas equal to 0, 1, 3 and 4. We
deal with corresponding ordinates equal to a) 2, 2, 1, 1, b) 2, 1, 1, 1, c) 1, 1, 1, 1. There are produced
resolving systems S·c = r where

26 8 8 26

8 8 4 , 8

8 4 4 8

S r

 = =

;

26 8 8 26

8 4 5 , 8

8 5 7 8

S r

 = =

;

26 8 9 27

8 4 6 , 9

9 6 10 11

S r

 = =

in cases a). b) and c), respectively. We investigate them below.

4 A.Marlewski

Case a). The resolving system has infinitely many solutions: c = [1, α, -α]T, where α denotes an
arbitrary parameter. Thus it is hard to correctly interpret the output function is x → (α+x)/(x+α),
which equals to 1 for every x ≠ α. Moreover, this function (even if is made continuos at x = α by
assigning the value 1) is not of desired form.

Case b). There exists exactly one solution c = [1, 0, 0]T to the system S·c = r. This solution generates
the expression F(x) = (c1+c0·x)/(c2+x) = x/x. This formal answer can not be accepted because it is not
defined at the point x = 0 (and the continuitisation at this point indicates the value 1, not 2). The
analogous situations occur for data (-2,1), (0,1) and (4,2), and if given points are (-2,1), (0,2)
and (4,1). We obtain now the systems

20 2 6 36

2 3 4 6

2 4 6 14

c

 ⋅ =

 and

20 2 2 20

2 3 4 2

2 4 6 2

c

 ⋅ =

,

respectively. They have the unique solutions c = [1, –4, –4]T and c = [1, 0, 0]T and they determine
the approximating functions F(x) = (x–4)/(x–4) and F(x) = x/x. Both these function are equal to 1 at
every argument x but x = 4 and x = 0, respectively. Naturally, they can not be accepted as the
solutions, because their graphs do not pass through given points (note that here the approximation
reduces to the collocation by a rational function, comp. [Marlewski]). We exclude these solutions via
the examining their behaviour for every abscissa of given points.

Case c). The vector c = [3/2, –15/4, 2]T is the only solution to the resolving system S·c = r. The
function F(x) = (3/2·x–15/4)/(–2+x) = 3/4·(2x–5)/(x–2) is that we looked for, its graph passes as close
(in the sense of LSA) as possible to given points (0,2), (1,2), (3,1), (4,1).

5. CAS assistance in linear least-square fitting
As it was outlined above, the linearisable least-square fitting reduces to solving a system (5) of linear
equations. Even for few points (xk,yk) there are to be performed arduous, time-consuming summations
and resolving systems of linear equations are to be solved. In general, these systems are very sensitive, so
there is really need to facilitate this procedure. It is where a computer algebra system may efficiently
assists. We will discuss it in case of DERIVE from Warehouse Inc., but the question is the same if one
works with. let's say for instance, Maple from Waterloo Maple Software or Mathematica from Wolfram
Research Inc.
The program DERIVE provides the built-in function FIT which returns the best least-square
approximation within indicated class of function to given data. It is enough to simplify the evoking such
as

FIT([x,c0+c1*x+c2*x^2],xy)
to get the answer

-x2/3+11⋅⋅⋅⋅x/15+11/5
assuming that xy:=[[0,2],[1,3],[3,1],[4,0]] is the matrix collecting four given points
(0,2), (1,3), (3,1) and (4,0).
This very efficient function has no big educative value because it does not show "bricks which build the
final house". In this case these bricks are matrices P, S and the vector r presented in the system (5). In
particular, it makes that a student coming to false result does not know where (s)he made an error (or,
maybe, more errors). That's why we suggest that in lessons on least-square fitting an other function should
be applied. For the simplicity we restrict ourselves only to the case of Stevin polynomial approximation.
The function LPO_ was supplied for students. We evoke it in the form LPO_(xy,n), where xy is
(identically as in the case of the built-in function FIT) the 2-column matrix listing given points, and n
stays for the degree of the searched polynomial. Simplification yields the same expression as the function
FIT does. But after this simplification we can get the value of the supplementary variable lpo_all.
This displays the vector comprising 7 elements.

5 A.Marlewski

They are sequentially: 1) the matrix P, 2) the matrix S, 3) the vector r, 4) the vector c solving the system S
⋅c=r, 5) the approximating polynomial expression, 6) the matrix facilitating the marking of deviations at
every given point, 7) the standard deviation. One easily note that the simplification of the calling
LPO_(xy,n) exposes the fifth element of this list only.
In Fig.1 there is shown a sample evoking of LPO_ function, its simplification and the values returned by
the supplementary variable lpo_all. Its 5th and 6th components are plotted in Window 2, they are the
parabolic arc and the thin bars starting on the axis Ox and visualisating the deviations at every given

Fig.1. Parabolical fitting discussed in Section 5

6 A.Marlewski

Fig.2. Four sample approximations by functions of the form (a⋅x+b)/(x-c).
We simplified the calls ARA([[0,z],[1,2],[3,1],[4,0]]) for z = 0, 1, 2 and 3

˝

point. The whole picture is enriched with the image of given points (the value Discrete has to be
assigned to the field Options State Mode: now, while it has to be switched to Connected when
the deviations are to be plotted).

6. CAS assistance to rational least-square fitting
There is no build-in or unit-provided function in DERIVE which may be applied to produce the best
discrete least-square rational approximation. This problem is not discussed also in books on
approximation (see Bibliography), although the continuous case is discussed. That's why here we had to
construct our own function. In this paper we do it in case of the strict (1,1)-rational fitting, i.e. when the
approximating function is of the form (9). In presence of some complications mentioned in Chapter 4,
much more than in Chapter 6 we need here to use the function which does not expose only the final output
(we know, it may be the expression describing the approximating function, or the statement that such a
function does not exist). That's why we follow the approach applied in case of the function LPO. We
supply students with the definition of the own-defined function ARA. The syntax of the evoking is
ARA(xy), where xy stays for the same matrix as above. The simplification results in the expression
describing found approximation function of the form (8) or in the statements on the singularity or non
equivalence. By the way there is assigned the value of the supplementary variable ara_all and we can
see it if interested in the details of the process leading to the final conclusion. ara_all is the vector of
the length depending on the case. If the searched is determined, it is of the form as all_lpo is. If the
quested function does not exist, all_lpo comprises only 1) the matrix P, 2) the matrix S, 3) the vector r, 4)
the inscription "SINGULAR CASE" (if the system has infinitely many solutions and no one of them can
not be acceptable) or "NO EQUIVALENCE" (if the resolving system is uniquely solvable, but the
obtained function can not be accepted).

7 A.Marlewski

7. Conclusion
Looking for best linear least-square approximation is one of most frequently used techniques in both
theoretical researches (based on the experiment observations) and practice applications. There is no
university program in mathematics which does not treat this question, specially because out of its wide
applicability it is an excellent area to exercise the skills gained in courses in linear algebra. On the other
side, this part of mathematics is not deeply explored, and usually it is limited to deal with the standard
polynomial approximation. In this paper we showed how to adopt the least-square method to linearisable
problems, which sometimes reveal some unexpected features. An essentially aid furnished by computer
algebra systems (such as DERIVE) is outlined here. This aid does not serve only to speed up the
calculations (students do not have to obtain matrices and solve systems of equations) and to observe how
data influence the result (see Fig.2). Thanks to constructions lpo_all and ara_all it helps to better
understand the algorithm and control its performation.

Appendix.
We give here the definitions of functions described in the paper, as well as examples of their use (for data
considered in Chapters 4, too).
DIM(v):=DIMENSION(v)
 ;standard deviation of the function f (of variable x) on data
 collected in vector xy:
OSTA_(xy,f):=SQRT(SUM((LIM(f,x,xy SUB j SUB 1)-xy SUB j SUB 2)^2,

 j,DIM(xy)))/DIM(xy)
 ;matrix to see the deviations of the function f (of variable x)
 at points listed in the vector xy (keep Option State Mode: Connected):
BAR_VIS(xy,f):=VECTOR([[xj_:=ELEMENT(xy,j,1),0],

 [xj_,LIM(f,x,xj_)-ELEMENT(xy,j,2)]],j,DIM(xy))
"---"
 ;matrix of powers of Stevin base (1,x,x^2,...,x^m):
LPO_POW(xx,m):=VECTOR(VECTOR(xx SUB j^k,k,0,m),j,DIM(xx))
 ;best LSA to data xy by the standard polynomial of degree m:
LPO_(xy,m):= (lpo_all:=[lpo_p:=LPO_POW(xy` SUB 1,m),

 lpo_s:=lpo_p`.lpo_p,lpo_r:=lpo_p`.xy` SUB 2,
 lpo_c:=lpo_r/lpo_s,lpo_f:=lpo_c*VECTOR(x^(j-1),j,m+1),

 BAR_VIS(xy,lpo_f),lpo_q:=OSTA_(xy,lpo_f)]) SUB 5
 ;sample data:
xy:=[[-3,2],[-2,2],[1,2],[3,-1]]
 ;sample simplification resulting in searched function:
LPO_(xy,2)=-13*x^2/59-26*x/59+142/59
 ;displaying the value of the supplementary variable lpo_all

(5th and 6th components, as well as the argument xy, are shown at Fig.1):
lpo_all=[[[1,-3,9],[1,-2,4],[1,1,1],[1,3,9]],[[4,-1,23],[-1,23,-7],[23,-7,179]],

 [5,-11,19],[142/59,-26/59,-13/59],-13*x^2/59-26*x/59+142/59,
 [[[-3,0],[-3,-15/59]],[[-2,0],[-2,24/59]],
 [[1,0],[1,-15/59]],[[3,0],[3,6/59]]],3*SQRT(118)/236]

"---"
 ;matrix and vector (10):
[ARA_A(xy):=VECTOR([xy SUB j SUB 1,1,xy SUB j SUB 2],j,DIM(xy)),
 ARA_B(xy):=VECTOR(xy SUB j SUB 1*xy SUB j SUB 2,j,DIM(xy))]
 ;shortnames for matrices (10) and creation of matrices in (11):
ara_i:=[ara_p:=ARA_A(xy),ara_v:=ARA_B(xy),

 ara_s:=ara_p`.ara_p, ara_r:=ara_p`.ara_v]
 ;answer in case the fitting is okey:
ara_o:=[ara_c, ara_f:=(ara_c↓↓↓↓1*x+ara_c↓↓↓↓2)/(x-ara_c↓↓↓↓3),

 BAR_VIS(xy,ara_f), ara_q:=OSTA_(xy,ara_f)]
 ;examing for 0 in the denominator (NO EQUIVALENCE case):
ara_j:=IF(IS_IN_DATA((ara_c:=ara_r/ara_s) SUB 3,

 xy`SUB 1),["NO EQUIVALENCE"],ara_o)
 ;augmenting initial part with NO EQUIVALENCE announcement:
ara_e:=APPEND(ara_i,ara_j)
 ;augmenting initial part with SINGULAR CASE announcement:

8 A.Marlewski

ara_0:=APPEND(ara_i,["SINGULAR CASE"])
 ;collapsing 3 cases into one bunch:
ara_:=IF(DET(ara_i↓↓↓↓3)=0,(ara_all:=ara_0)↓↓↓↓5,

 (ara_all:=ara_e) SUB IF(DIM(ara_j)=1,5,6))
 ;function yielding the best LSA or the appropriate announcement:
ARA(m):=0*(xy:=m) SUB 1 SUB 1+ara_
 ;Case a) in Chapter 4: example of use - no fitting is found

(there is a parameter in the solution of resolving system):
ARA([[0,1],[1,1],[3,1],[4,1]])="SINGULAR CASE"
ara_all=[[[0,1,1],[1,1,1],[3,1,1],[4,1,1]],[0,1,3,4],

 [[26,8,8],[8,4,4],[8,4,4]],[26,8,8],"SINGULAR CASE"]
 ;Case b) in Chapter 4: example of use - no fitting is found

(the denominator vanishes for the abscissa of a given point):
ARA([[0,2],[1,1],[3,1],[4,1]])="NO EQUIVALENCE"
ara_all=[[[0,1,2],[1,1,1],[3,1,1],[4,1,1]],[0,1,3,4],[[26,8,8],[8,4,5],[8,5,7]],

 [26,8,8],"NO EQUIVALENCE"]
 ;Case c) in Chapter 4:- best LSA is furnished:
ARA([[0,2],[1,2],[3,1],[4,1]])=3*(2*x-5)/(4*(x-2))
 ;displaying the value of the supplementary variable ara_all (5th and 6th

components, as well as the argument xy,are shown in Window 5 in Fig.2):
ara_all=[[[0,1,2],[1,1,2],[3,1,1],[4,1,1]],[0,2,3,4],[[26,8,9],[8,4,6],[9,6,10]],

 [27,9,11],[3/2,-15/4,2],3*(2*x-5)/(4*(x-2)),[[[0,0],[0,-1/8]],
 [[1,0],[1,1/4]],[[3,0],[3,-1/4]],[[4,0],[4,1/8]]],SQRT(10)/32]

Bibliography

[Akai] Applied numerical methods for engineers", John Wiley & Sons, Inc., New York 1993
[Blum] E.K.Blum, "Numerical analysis and computation", Addison Wesley, Reading (Mass.) 1972
[Burden] R.L.Burden, J.D.Faires, 'Numerical analysis", Prindle, Webber & Schmidt, Boston 1985
[Chapra] S.C.Chapra, R.P.Canale, "Numerical methods foe engineers", McGraw-Hill International

Editions, 1990
[Eide] A.R.Eide, R.D.Jenioson, L.H.Mashaw, L.L.Northup, "Engineering fundamentals and problem

solving", McGraw-Hill Book Company, New York 1979
[Jankowscy] J. i M. Jankowscy, "Przegl• d metod i algorytmów numerycznych. Cz• • • 1", WNT

Warszawa 1981
[Marlewski] A.Marlewski, "Rational collocation", DERIVE Newsletters 8/1992, 10-14
[Nicholson] W.K.Nicholson, "Elementary linear algebra with applications", Prindle, Webber & Schmidt,

Boston 1986
[Ralston] A.Ralston, "A first course in numerical analysis", McGraw-Hill Book Company, New York

1965; Polish edition: PWN Warszawa 1983
[Scheid] F.Scheid, "Análise numérica", Editora McGraw-Hill de Portugal, 1991
[Sobol] M.S.Sobol, M.K.Starr, "Statistics for buisiness and economics. An action learning approach",

McGraw-Hill Book Company, New York 1983
[Venit] S.Venit, W.Bishop, "Elementary linear algebra", Prindle, Webber & Schmidt, Boston 1986

	CONTENTS:

