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Abstract

In this paper we implement the QR algorithm  for finding eigenvalues of large square
matrices in the Derive for Windows (DFW) programming language.  There are two major
reasons for this: there is presently no implementation of this method in the DFW program
or in the accompanying utility files; the implementation has required the development of
DFW programming strategies that may help others achieve their particular programming
goals.  As an appendix to this work, the QR algorithm is used to find all the solutions to
high order polynomials with real coefficients.

Key Words: QR algorithm, programming in Derive, eigenvalues, solving polynomials,
stopping rules.

Introduction

The prime motivation for this paper is the description of some programming strategies
that have been developed in order to develop the QR algorithm in the Derive for
Windows (DFW) programming language.  DFW has within it a high level programming
language that has many useful and computationally efficient tools that are available due
its ability to algebraically manipulate objects and expressions.  Whilst there are many
advantages in solving mathematical programming problems in DFW, due to the
mathematical tools already available, there are some apparent limitations in its ability to
perform certain tasks.  Some of these limitations and solutions are addressed in this
paper.  This paper may well have a limited shelf life as further versions of DFW may well
address the difficulties and short comings presented here.

The QR Algorithm

The QR algorithm is an iterative method that transforms a matrix M into a diagonal
matrix (or quasi-diagonal matrix) that has the same eigenvalues as M.  As the diagonal
elements of a diagonal matrix are its eigenvalues, we can find all the eigenvalues of any
matrix M (as long as we can get the method to converge).

A full and readable account of the method can be found in [1] and a rigorous treatment is
in [5] but the bare bones of method are described here.
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Take any matrix M and convert it into an upper Hessenberg Matrix with the same
eigenvalues of M.  An upper Hessenberg matrix is of the form
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i.e. all the elements below the sub diagonal (δ δ δ1 2 1, , ,� n− ) are 0.  This transformation is
achieved through repeated Householder transformations which in effect annihilate (make
zero) all the elements of the matrix M below the sub diagonal, whilst preserving the
eigenvalues of M.  This procedure is straightforward to program in DFW and a
description of the method can be found in [1] section 6-7 and the DFW code is found
below.

Once in upper Hessenberg form, we now wish to reduce the sub diagonal elements to
zero.  To do this we employ the technique of QR factorisation, i.e.  we express the matrix
as a product of an orthogonal matrix Q and an upper Right triangular matrix R.

The QR method for computing eigenvalues (Rutishauser [2], Francis [3] and
Kublanovskaya [4])  employs the iterative procedure

M Q Rn n n=  and M R Qn n n+ =1 .

If all the eigenvalues of M  are real then this iterative procedure  converges to a triangular
matrix with the same eigenvalues as M, more typically some of the subdiagonal elements
converge to some number other that 0 and hence a “quasi-triangular” matrix ensues.  The
quasi-triangular matrix implies that there are some complex eigenvalues (this is dealt
with later).

Even with an upper Hessenberg transformation, the convergence of this method is quite
slow and the computation times can be very high for large matrices.   Consequently a
shift technique (developed by Francis [3]) is employed to rapidly increase convergence.
This technique involves the diagonal elements of the matrix M  being shifted by the

eigenvalue of the bottom right 2 x 2 submatrix 
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 of M which is closest to

the value an n, . Once the eigenvalues have been found these “shifts” are reversed.

The algorithm that we employ in this paper is described here for a 4x4 matrix

1. Convert the matrix to upper Hessenberg
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here the * are the sub diagonal elements.

2. Shift the diagonals of the matrix by the eigenvalue of the sub matrix nearest the
bottom right diagonal element.

Now apply a special QR factorisation method called a Given’s rotation [6] which
annihilates each *  and then post multiplies by the inverse (in this case also the
transpose) of the annihilation matrix.  The process of shifting and applying Given’s
rotations down the subdiagonal is repeated until the bottom right subdiagonal element
is very small or it converges to a number other than 0.

Eventually, what is left is a matrix of the form
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if ε is very small then λ + total shift is an eigenvalue of the matrix and the last row and
column are deleted (deflated) and the process is repeated on the smaller 3x3 matrix.

If ε converges to a number other than 0 then the eigenvalues of the bottom 2x2 sub
matrix + total shift are eigenvalues of the matrix M and the last two rows and columns
are deleted (deflated) and the process is repeated on the smaller 2x2 matrix

The Problems of implementing the Algorithm

The problem of implementing this method is that it is iterative and hence we want to
output results once some convergence has been achieved.  So we need some method of
stopping a sub process when convergence has been achieved, without  terminating the
global process.  This is not straightforward in DFW as it acts as a “Turing Machine” and
only outputs results once all computations are finished.  That is intermediate results
cannot be output or the user store values in variables during the computation for
retrospectively use in later computations.  As a consequence one must be very mindful of
which variables will be needed at later stages of the computation and store them as
elements of a vector which are then passed onto the next set of calculations.

In addition the programmer must also work efficiently, in that no calculation should be
needlessly repeated.  A simple example of needless repetition is
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FEE(A) which  multiplies the dimension of a matrix  A by 1 less that the dimension of the
matrix A:

FEE(A):=DIMENSION(A)*(DIMENSION(A)-1),

The inefficiency lies in the fact that the dimension of the matrix is calculated twice where
we only need to calculate it once.  The use of an auxiliary functions reduce the need for
multiple calculations:

FEE_AUX(N):=N(N-1)
FEE(A):=FEE_AUX(DIMENSION(A))

Although an artificial example, this kind of use of auxiliary functions does drastically
reduce computation times.

Stopping a convergent sub process can be achieved using recursively defined function via
the IF command. For example imagine that we wish to stop an iterative process when the
difference between the iterates is 0.1.

If the iterative process is u un n+ =1 cos( )  and we start at u0 1= , the series of iterates are:

ITERATES(COS(x), x, 1, 7)

[1, 0.5403023058, 0.8575532158, 0.6542897904, 0.7934803587, 0.7013687736, 0.7639596828,
0.7221024250]

So the difference between the iterates is less than 0.1 when the iterative process reaches
0.7013687736.

A strategy is:
Stop(s)
Iterate once start at  s produce vector [s,t]
Is abs(t-s)<0.1 ? Yes -> output t   No -> stop(t)

In DFW this is coded as

STOP_AUX(uuu, vect, xxx) :=
IF(ABS(vect™2 - vect™1) < 10^(-1), vect™2,

STOP_AUX(uuu, ITERATES(uuu, xxx, vect™2, 1), xxx))

Where uuu is the iterative scheme, vect  is a 2 element vector of the last two iterates, xxx is
the variable of the iterative scheme.

STOP(uuu, xxx, aaa) := STOP_AUX(uuu, ITERATES(uuu, xxx, aaa, 1), xxx)

The STOP()function passes the first two iterates into the STOP_AUX() recursive function
and it keeps going until the  condition

ABS(vect™2 - vect™1) < 10^(-1)
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is achieved.  Notice that the key aspect to this function is the bold typed vect™2 in the
STOP_AUX() definition above, this ensures that if the condition is not met the process
starts again with the a new starting value, that being last value calculated.  Approximating

STOP(COS(x), x, 1)
gives 0.7013687736

This technique will prove invaluable in the programming of the QR algorithm.

The Shifted QR Algorithm Implemented

Hessenberg Matrix

First we must transform our matrix into a Hessenberg Matrix.  Our first step is to
construct a Householder matrix.  A Householder matrix H  has the property that H H= −1

and H I ww= − 2 T for some column vector w .  By finding a special value for w , we can
build a Householder matrix that annihilates the last n k−  elements of a vector column x
(size n) and leaves the first k −1 elements alone.  The value for w  that will do this is
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where s x x xk k n= + + ++
2

1
2 2
�  and xk  is the kth element of x .

It can be proven that the eigenvalues of the matrix M  are equal to the eigenvalues of the
matrix A MA−1 . So in the case of a Householder matrix HMH  has the same eigenvalues
as M .  So we can annihilate the every element below each subdiagonal of each column
of any matrix.  The DFW code is

S__1(x_, k_, n_) := ¦VECTOR(x_  , t_, k_, n_)¦
                    ¦         t_             ¦

This function evaluates s x x xk k n= + + ++
2

1
2 2
�  for a given column k

HH_1(x_, k_, s_, n_) :=
1/‹(2·s_·(s_ + ABS(x_™k_)))·
APPEND([VECTOR(0,p_, 1,k_ - 1,[x_™k_ + SIGN(x_™k_)·s_],
        VECTOR(x_™p_, p_, k_ + 1, n_)])

This function evaluates the expression (**) for a particular column k.
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HH_2(i__, w__) := i__ - 2·w__`·w__

The general form of the Householder Matrix, notice that I_ is used for the identity matrix.
This is to ensure that the identity matrix is only calculated once, inefficient programming
can lead to this being calculated many times needlessly.

HH_3(x_, k_, i__, n_) :=
HH_2(i__, [HH_1(x_, k_, S__1(x_, k_, n_), n_)])

Calculates the Householder matrix for the Kth  column.

HH_4(hh, matrix) := hh·matrix·hh

Auxiliary function to avoid over calculation

HH_5(matrix, matrixt, k_, i__, n_) :=
HH_4(HH_3(matrixt™(k_ - 1), k_, i__, n_), matrix)

HH_6(matrix, c_, i__, n_) := HH_5(matrix, matrix`, c_ + 1, i__, n_)

HH_7(init_matrix, i__, n_) :=
(ITERATE([c_ + 1, HH_6(matrix, c_, i__, n_)], [c_, matrix], [1, init_matrix], n_ - 2))™2

The ITERATE command forces the Householder matrix to act on each column in turn
preserving the Householder transformations as it progresses.

HESS_1(mat, n_) := HH_7(mat, IDENTITY_MATRIX(n_), n_)

HESS(mat) := HESS_1(mat, DIMENSION(mat))
  
The final HESS(mat) function to calculate the upper Hessenberg Matrix.

Example

     „ 450   75   -525   150 †   „  450   225   225   450 †
     ¦                       ¦   ¦                        ¦
     ¦ 75    253   380   -79 ¦   ¦ -225   225   450   225 ¦
HESS ¦                       ¦ = ¦                        ¦
     ¦ 150    5    325  -215 ¦   ¦   0   -225   225  -225 ¦
     ¦                       ¦   ¦                        ¦
     … 150  -604   160   322 ‡   …   0     0   -450   450 ‡

You will notice that the Trace of both these matrices is identical.

Given’s Rotation

We now apply the QR algorithm with Given’s Rotations. In this implementation we use
the form
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REPLACE_MAT_ELEMENT(aa, matr, ii, jj) := REPLACE_ELEMENT(REPLACE_ELEMENT(aa,
matr™ii, jj), matr, ii)

A function which replaces the element in the row ii and column jj in matrix matr with aa.

GIVEN_1(c__, s__, matr, c_) :=
REPLACE_MAT_ELEMENT(c__, REPLACE_MAT_ELEMENT(s__, REPLACE_MAT_ELEMENT(-
s__, REPLACE_MAT_ELEMENT(c__, matr, c_, c_), c_, c_ + 1), c_ + 1, c_), c_ + 1, c_ + 1)

GIVEN_2(i_, c_, a__, b__, c__) := GIVEN_1(a__/c__, - b__/c__, i_, c_)

GIVEN(matr_, i_, c_) :=
GIVEN_2(i_, c_, matr_™c_™c_, matr_™(c_ + 1)™c_,
                              ‹(matr_™c_™c_^2 + matr_™(c_ + 1)™c_^2))

These functions efficiently produces the matrix described in (***).

QR_1(giv_temp, matrix_, c_) :=
[giv_temp™c_, giv_temp™(c_ + 1)]·matrix_

QR_2(mat_temp, matrix_, c_) := REPLACE_ELEMENT(mat_temp™2,
REPLACE_ELEMENT(mat_temp™1, matrix_, c_), c_ + 1)

Due to the nature of multiplying by these Given’s matrices, there is a lot of multiplying
by 0’s and 1’s in all but 2 of the rows,  So these two functions just multiply by the active
rows and then insert into the given identity matrix.

QR_3(matrix_, giv_temp, i_, c_) :=
          QR_2(QR_1(giv_temp, matrix_, c_), matrix_, c_)·giv_temp`
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The giv_temp` at the end is the post mutliplication to preserve the eigenvalues of the
original matrix.

QR_4(matrix_, i_, c_) := QR_3(matrix_, GIVEN(matrix_, i_,c_), i_, c_)

QR_4() will annihilate the sub diagonal in column c_ and then post multiply by the
annihilating Given’s rotation matrix transposed to preserve eigenvalues.  This action
takes the subdiagonal in column c_ closer to 0 or some convergent value.

QR_5(matrix_, i_, n_) := (ITERATE([c_ + 1, QR_4(j_, i_, c_)], [c_, j_], [1, matrix_], n_ - 1))™2

The iterate here forces the QR_4() function to act on each column from 1 to n−1 where n
is the dimension of the matrix.  Notice how we still have not used the
IDENTITY_MATRIX(n)  or DIMENSION(M) yet as this would cause unnecessary duplication
of work .

Example

    • „  450   225   225   450 †                       ‚
    ¦¦                        ¦                       ¦
    ¦¦ -225   225   450   225 ¦                       ¦
QR_5¦¦                        ¦, IDENTITY_MATRIX(4), 4¦
    ¦¦   0   -225   225  -225 ¦                       ¦
    ¦¦                        ¦                       ¦
    • …   0     0   -450   450 ‡                       ƒ

„       405            252.561      -68.7386  349.052 †
¦                                                     ¦
¦    -168.374          109.285      -7.87335  618.647 ¦
¦                                                     ¦
¦             -12                                     ¦
¦ - 6.46540·10        -393.667       565.714  168.374 ¦
¦                                                     ¦
¦             -12              -12                    ¦
… - 6.04782·10     - 7.44855·10     -252.561    270   ‡

Notice that rounding error is creeping in and that two of the sub-diagonals have got closer
to 0.

The Francis Shift
FRANCIS_SHIFT_AUX_1(matr_1, n_) :=
RE(RHS(EIGENVALUES([[matr_1™(n_ - 1)™(n_ - 1), matr_1™(n_ - 1)™n_],
                              [matr_1™n_™(n_ - 1), matr_1™n_™n_]])))

This function calculates the eigenvalues of the bottom right sub matrix of the matrix
matr_1 of dimension n_.
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FRANCIS_SHIFT_AUX_2A(eig, ann) :=
IF(eig™1 = 0 •  eig™2 = 0, -1, IF(ABS(eig™1 - ann) < ABS(eig™2 - ann),
                                                eig™1, eig™2, eig™1))

These functions find the eigenvalue nearest the bottom right diagonal, also if the real par
of  the two eigenvalues are 0, this will result in a shift of 0 which is useless.  If this
should happen we shift by an arbitrary –1 to help the Francis shifting to get started.

FRANCIS_SHIFT_AUX_2(eig, matr_1, n_) :=
FRANCIS_SHIFT_AUX_2A(eig, matr_1™n_™n_, n_)

FRANCIS_SHIFT_AUX_3(matr_1, sigmak, i_) := matr_1 - sigmak·i_

sigmak is the calculated Francis shift

FRANCIS_SHIFT_AUX_4(matr_1, i_, n_) :=
  FRANCIS_SHIFT_AUX_3(matr_1,
    FRANCIS_SHIFT_AUX_2(FRANCIS_SHIFT_AUX_1(matr_1, n_), matr_1, n_,

      i_)

More passing into auxiliary functions to avoid repetitive calculations.

The Shifted QR Algorithm

We apply a Francis shift to our Hessenberg matrix and apply Given’s rotation
annihilation and post multiplication down the sub diagonal  elements. We inspect the
bottom right sub diagonal, if it less that say 10^-8 then we can estimate one of the
eigenvalues as the bottom right diagonal element.  If not we need to apply the whole
shifted process again (but we need to remember the previous shift(s) so that they can all
be reversed when convergence or  closeness  to zero has been achieved.  If convergence
of the bottom sub diagonal element to number other than zero has been achieved then we
find the eigenvalues of the bottom right 2x2 sub matrix and reverse all the shifts.

Here’s how we do this:

QR_SHIFTED_AUX_1(matr_1, total, sigmak, i_, n_) :=
[total + sigmak, QR_5(FRANCIS_SHIFT_AUX_3(matr_1, sigmak, i_),i_,n_)]

This produces a 2 element vector of the shift +total and the shifted matrix after the
Given’s process.

QR_SHIFTED_AUX_2(matr_1, total, i_, n_) :=
  QR_SHIFTED_AUX_1(matr_1, total,
    FRANCIS_SHIFT_AUX_2(FRANCIS_SHIFT_AUX_1(matr_1, n_), matr_1, n_),
                                                              i_, n_)

A computation saving function, this saves the Francis shift being calculated twice.

QR_SHIFTED_AUX_3A(matr_1, n_, i_) :=
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     ITERATES(QR_SHIFTED_AUX_2(matr_2, total, i_, n_),
                  [total, matr_2], [matr_1™1, matr_1™2], 1)

This function calculates two iterations of the Francis shift, with the accumulated shift in
the first column of the ensuing matrix and the second column having the successive
shifted and Given’s matrices . Matr_1 must be of the form [0,Hessenberg]

Example
                 • „   „  450   225   225   450 ††                       ‚
                 ¦¦   ¦                        ¦¦                       ¦
                 ¦¦   ¦ -225   225   450   225 ¦¦                       ¦
QR_SHIFTED_AUX_3A¦¦0, ¦                        ¦¦, 4, IDENTITY_MATRIX(4)¦
                 ¦¦   ¦   0   -225   225  -225 ¦¦                       ¦
                 ¦¦   ¦                        ¦¦                       ¦
                 • …   …   0     0   -450   450 ‡‡                       ƒ

„                  „  450   225   225   450 †               †
¦                  ¦                        ¦               ¦
¦                  ¦ -225   225   450   225 ¦               ¦
¦  0               ¦                        ¦               ¦
¦                  ¦   0   -225   225  -225 ¦               ¦
¦                  ¦                        ¦               ¦
¦                  …   0     0   -450   450 ‡               ¦
¦                                                           ¦
¦     „     406.159         252.439     -68.8425  349.321 † ¦
¦     ¦                                                   ¦ ¦
¦     ¦    -168.364         110.391     -7.25956  618.760 ¦ ¦
¦     ¦                                                   ¦ ¦
¦ -1  ¦             -11                                   ¦ ¦
¦     ¦ - 3.21748·10       -393.193      567.074  167.864 ¦ ¦
¦     ¦                                                   ¦ ¦
¦     ¦             -11            -11                    ¦ ¦
…     … - 3.00681·10     1.13966·10     -252.671  270.374 ‡ ‡

In this example the nearest eigenvalue of the bottom right 2x2 sub matrix  to the bottom
right diagonal is 0 ,so the arbitrary shift of –1 was employed to offset this.

QR_SHIFTED_AUX_3B(matr_4, n_, i_) :=
   IF(0.9999 < ABS(matr_4™2™1/matr_4™1™1) < 1.0001 •
                            ABS(matr_4™2™2™n_™(n_ - 1)) < 10^(-8),
      matr_4™2,
      QR_SHIFTED_AUX_3B(QR_SHIFTED_AUX_3A(matr_4™2, n_, i_), n_, i_))

This tests either the convergence of the accumulated Francis shifts or that bottom right
sub diagonal is less than 10^-8 (this can be changed to suite accuracy needs), if not carry
on until it does (recursively), using the last accumulated shift and Given’s matrix thus far.

REDUCE_MAT(matr_5, n_, sw_) :=
IF(sw_ = 0, DELETE_ELEMENT(DELETE_ELEMENT(matr_5, n_)`, n_)`,
DELETE_ELEMENT(DELETE_ELEMENT(DELETE_ELEMENT(DELETE_ELEMENT(matr_5, n_), n_ - 1)`, n_),
n_ - 1)`)

If the argument sw_ (switch) is 0, delete last row and last column else delete the last two
rows and last two columns.  This function deflates the matrix once an eigenvalue or a
pair of eigenvalues have been found.
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QR_SHIFTED_AUX_4A(tmat_1, totshift, redmat1, redmat2, id_1, id_2, n_) := IF(ABS(tmat_1™n_™(n_ - 1)) <
10^(-6),
[[totshift + tmat_1™n_™n_], redmat1 + totshift·id_1],
[[totshift, totshift] + RHS(EIGENVALUES([[tmat_1™(n_ - 1)™(n_ - 1), tmat_1™(n_ - 1)™n_],
[tmat_1™n_™(n_ - 1), tmat_1™n_™n_]])), redmat2 + totshift·id_2])

At this stage the we have a vector of two elements, an accumulated shift and a reduced
matrix.  If the bottom right sub diagonal of the reduced matrix is <10^-6 then add the
total accumulated shift to the bottom right sub diagonal and then add the total shift back
to the diagonals of the matrix and delete the last row and last column (deflate).  If the
bottom right sub diagonal of the reduced matrix is not <10^-6, then find the eigenvalues
of the bottom right 2x2 sub matrix and add the total accumulated shift to each eigenvalue,
add the accumulated shift to the diagonals of the reduced matrix and delete the last two
rows and columns.  Quite an important function.

QR_SHIFTED_AUX_4B(tmat_1, totshift, redmat1, redmat2, n_) :=
 QR_SHIFTED_AUX_4A(tmat_1, totshift, redmat1, redmat2,
  IDENTITY_MATRIX(DIMENSION(redmat1)),
  IDENTITY_MATRIX(DIMENSION(redmat2)), n_)

QR_SHIFTED_AUX_4C(tmat_1, totshift, n_) :=
 QR_SHIFTED_AUX_4B(tmat_1, totshift, REDUCE_MAT(tmat_1, n_, 0),
 REDUCE_MAT(tmat_1, n_, 1), n_)

QR_SHIFTED_AUX_4(matr_9, n_) :=
 QR_SHIFTED_AUX_4C(matr_9™2, matr_9™1, n_)

QR_SHIFTED_AUX_5(matr_1, n_, i_) :=
  QR_SHIFTED_AUX_4(QR_SHIFTED_AUX_3(matr_1, n_, i_), n_)

QR_SHIFTED_AUX_6(matr_1, n_) :=
  QR_SHIFTED_AUX_5(matr_1, n_, IDENTITY_MATRIX(n_))

QR_SHIFTED_AUX_7(matr_1) :=
  QR_SHIFTED_AUX_6(matr_1, DIMENSION(matr_1))

Computation saving auxiliary functions.

Example

                 „  450   225   225   450 †
                 ¦                        ¦
                 ¦ -225   225   450   225 ¦
QR_SHIFTED_AUX_7 ¦                        ¦
                 ¦   0   -225   225  -225 ¦
                 ¦                        ¦
                 …   0     0   -450   450 ‡

„                                            „ -77.9142  -337.743 ††
¦[570.844 + 78.0216·î, 570.844 - 78.0216·î], ¦                    ¦¦
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…                                            …  477.503   286.225 ‡‡

Here the function has extracted two complex eigenvalues (as the bottom right sub
diagonal has not reduced to less than 10^-8) and has deflated the matrix to a 2x2.

QR_SHIFTED_AUX_8(eigenv, temp_mat) :=
[APPEND(eigenv, temp_mat™1), temp_mat™2]

We want to save the found eigenvalues as we deflate the matrix further and further so we
append each found eigenvalue or pair of eigenvalues to a vector called eigvenv, which
starts at [].

QR_SHIFTED_AUX_9(mm_, eigenv) :=
       QR_SHIFTED_AUX_8(eigenv, QR_SHIFTED_AUX_7(mm_))

QR_SHIFTED_AUX_10(mm_) :=
IF(DIMENSION(mm_™2) = 0, APPEND(mm_™1),
   IF(DIMENSION(mm_™2) = 1, APPEND([mm_™1, mm_™2™1]),
       QR_SHIFTED_AUX_10(QR_SHIFTED_AUX_9(mm_™2, mm_™1))))

This recursively defined function continues extracting eigenvalues and appending them to
the vector eigenv until the deflated matrix has null size or is of dimension 1.  We then
append the final eigenv to tidy up the elements of eigenv.

QR(mat) := QR_SHIFTED_AUX_10([[], HESS(mat)])

This final function in this section calculates the Hessenberg of the matrix and sets eigenv
to [] and the passes into all the previously defined functions.

Example

   „ 450   75   -525   150 †
   ¦                       ¦
   ¦ 75    253   380   -79 ¦
QR ¦                       ¦
   ¦ 150    5    325  -215 ¦
   ¦                       ¦
   … 150  -604   160   322 ‡

[570.844 + 78.0216·î, 570.844 - 78.0216·î, 104.155 + 357.944·î, 104.155 - 357.944·î]

Computation time 2.2s second 133Mhz Pentium 32 MB RAM Windows 95

A bigger example

   „ 2  4  1  4  7  7  4  7 †
   ¦                        ¦
   ¦ 7  4  6  3  6  4  7  0 ¦
   ¦                        ¦
   ¦ 7  5  1  0  5  1  5  7 ¦
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   ¦                        ¦
   ¦ 3  2  1  7  3  0  3  4 ¦
QR ¦                        ¦
   ¦ 5  1  3  2  3  4  6  6 ¦
   ¦                        ¦
   ¦ 7  5  6  5  3  3  0  3 ¦
   ¦                        ¦
   ¦ 5  3  2  2  5  2  4  0 ¦
   ¦                        ¦
   … 1  2  1  3  0  4  7  1 ‡

[1.28313 + 2.84106·î, 1.28313 - 2.84106·î, 5.34450, -3.73242 + 3.29570·î, -3.73242 - 3.29570·î, -2.12266 +
4.54225·î, -2.12266 - 4.54225·î, 28.7993]

Computation time 29.7 seconds 133Mhz Pentium 32 MB RAM Windows 95

Solving real coefficient polynomials

As a corollary to this work, if we can find the matrix whose characteristic equation is the
polynomial we wish to solve.  Then we can use the Shifted QR method to find the
eigenvalues of this companion matrix and hence the solutions to the polynomial.

A companion matrix to the polynomial  x c x c x cn
n

n+ + + +−
−

1
1

1 0�  is

0 0 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0

1
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1

−
−

−
−

�

�

�
�
�
�
�

�

�

�
�
�
�
�−

−

c

c

c

c
n

n

�

�

�

�

The Derive functions that convert a polynomial into its companion matrix are
                         1      • d ‚n
POLY_COEFF(u, x, n) := ————·lim ¦——¦  u
                        n!  x˜0 • dxƒ
POLY_DEGREE_AUX(u, x, n) :=
IF(u = 0, n, POLY_DEGREE_AUX(DIF(u, x), x, n + 1),
             POLY_DEGREE_AUX(DIF(u, x), x, n + 1))

POLY_DEGREE(u, x) := POLY_DEGREE_AUX(u, x, -1)

These 3 functions written by SWH Inc.

POLY_COEFF_VECT(u_, x_, n_) :=
VECTOR(POLY_COEFF(u_, x_, p_), p_, 0, n_ - 1)
Produces a vector of the coefficients of the given polynomial equation.

COMPANION_MATRIX_AUX(u_, x_, n_) :=
APPEND(DELETE_ELEMENT(IDENTITY_MATRIX(n_)`, 1), - [POLY_COEFF_VECT(u_, x_,
n_)/POLY_COEFF(u_, x_, n_)])`
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COMPANION_MATRIX(u_) := COMPANION_MATRIX_AUX(LHS(u_) - RHS(u_),
(VARIABLES(u_))™1, POLY_DEGREE(u_, (VARIABLES(u_))™1))

Finds the companion matrix of the polynomial equation u_.

Example

                  7      3
COMPANION_MATRIX(x  - 3·x  + 3 = 0)

„ 0  0  0  0  0  0  -3 †
¦                      ¦
¦ 1  0  0  0  0  0   0 ¦
¦                      ¦
¦ 0  1  0  0  0  0   0 ¦
¦                      ¦
¦ 0  0  1  0  0  0   3 ¦
¦                      ¦
¦ 0  0  0  1  0  0   0 ¦
¦                      ¦
¦ 0  0  0  0  1  0   0 ¦
¦                      ¦
… 0  0  0  0  0  1   0 ‡

ROOTS_AUX(u_) := QR(COMPANION_MATRIX(u_))

Finds good approximations to the solutions using the eigenvalues of the companion
matrix.

ROOTS_AUX_1(u_, x_, scheme, start) :=
VECTOR(ITERATE(scheme, x_, q_, 5), q_, start)

ROOTS_AUX_2(u_, x_) :=
ROOTS_AUX_1(u_, x_, x_ - u_/DIF(u_, x_), ROOTS_AUX(u_))

ROOTS_AUX_3(u_) := ROOTS_AUX_2(LHS(u_) - RHS(u_), (VARIABLES(u_)) )
                                                                 1
ROOTS(u_) := ROOTS_AUX_2(LHS(u_) - RHS(u_), (VARIABLES(u_)) )
                                                           1
Uses the Newton Raphson process to find the correct solutions to the accuracy set in the
Algebra State Menu, using the eigenvalues as starting points.

Example
       7      3
ROOTS(x  - 3·x  + 3 = 0)

[-1.41867, -0.515085 + 0.789532·î, -0.515085 - 0.789532·î, 1.11066 + 0.203548·î, 1.11066 - 0.203548·î,
0.113754 + 1.36138·î, 0.113754 - 1.36138·î]

Computation time 12.0 seconds 133Mhz Pentium 32 MB RAM Windows 95
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