
Proceedings of the Third International DERIVE/TI-92 Conf erence

Learning Discrete Mathematics with DERIVE
Nancy L. Hagelgans, Ursinus College, NHagelgans@acad.Ursinus.edu

Introduction

Students in my Discrete Mathematics course learn mathematics while they are working in
cooperative learning groups on challenging projects with DERIVE. The course includes
propositional and predicate logic, methods of proof, elementary number theory,
mathematical induction and recursion, set theory, functions and relations, and some graph
theory.

This course is offered at Ursinus College, a coeducational, independent, liberal arts college
located in the suburbs of Philadelphia, Pennsylvania, USA. It is the required writing course
in both the mathematics and computer science majors at the College. The class meets for
three hours each week during a 15-week semester. Students usually enroll in the course
during the second semester of the sophomore year, when they are typically 19 or 20 years
old. Although the mathematics prerequisite is only one semester of single-variable
calculus at the college level, most students have completed more advanced courses, such
as the second semester of single-variable calculus, mutivariate calculus, and linear algebra.
All the students have used DERIVE in calculus courses, and some students have studied
the programming language C++ in computer science courses. The maximum class size is
20 students.

The Initial Experiences with DERIVE

During the first week of the Discrete Mathematics course, the class meets for one of the
regular class hours in a computer laboratory. There the students have their first
experience of the semester with DERIVE, and they are assigned to cooperative learning
groups that will remain stable throughout the semester. Although there are more
computers than students available, the groups, which each comprises four or five students,
are instructed to use two adjacent computers and to discuss each step as they work
through the questions. The initial assignment includes a review of the applicable DERIVE
that the students have used in their calculus courses and an introduction to additional
features, such as Boolean constants and variables, that they need in their study of
propositional logic. The students work with predefined Boolean functions and with truth
tables.

The student groups complete the assignment during group meetings that they arrange
outside class time. The four questions on the top of the next page are questions that the
students must answer as a part of the first assignment:

1. What order of precedence does DERIVE use for the five predefined logical
operators?

mailto:NHagelgans@acad.Ursinus.edu

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 2

2. Define the biconditional function IFF of two variables. For example, the
expression IFF(true, false) should simplify to false. Check your definition of the
function IFF with a truth table.

3. Use truth tables to determine whether each of the following is a contradiction, a
tautology, or neither: ~p ∧ p, p → ~p, (p → q) ↔ (q → p), (p ∧ ~p) → (p ∨ ~p).

4. Verify that the operator < on the set {-2, -1, 0, 1, 2} is not commutative.
 Hint: Simplify the expression:

VECTOR(VECTOR(IFF (x < y , y < x), x, -2, 2), y, -2, 2).

 All four questions require the examination of results of DERIVE computations to
determine or verify answers. Students learn that truth tables and the VECTOR function
efficiently produce many examples to examine. And the students define their first
DERIVE function in the course. Thus the first experiences foreshadow the types of
problems that the students will be required to solve in subsequent assignments.

Projects on the Concepts of Discrete Mathematics

After the introductory exercises using the predefined Boolean functions, many problems
involve implementing the concepts of discrete mathematics using the numbers 0 and 1 to
represent the Boolean constants false and true, respectively. Thus the students must
translate mathematical concepts between two different mathematical systems. Since the
binary operators are implemented as functions of two variables, the students learn to work
with functional notation rather than the usual infix notation of certain operators. Instead
of using the predefined Boolean functions, students define their own functions. During the
semester, each cooperative learning group develops a collection of DERIVE functions
that can be used in their projects.

The complete directions and problem statements for the second assignment of the course
follow. As in subsequent assignments, the students must use DERIVE to verify their results,
and they must write explanations of their function definitions. This is the first assignment that
requires the use of the numbers 0 and 1 as Boolean values.

In order that we can use common names for functions that we define in
DERIVE, we will override one default choice for input of function names. To allow
case-sensitive names, make the following DERIVE menu choices:

Options Input Character Sensitive
 at the beginning of each DERIVE session.

1. In many applications of logic, such as in digital circuit design, the integers 0 and
correspond to the logic values false and true, respectively. With this correspondence in
mind, we will develop a system of logic using these integers rather than logic values.

 Let S = {0, 1}. Use arithmetic operations to define DERIVE functions:

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 3

not: S → S
and: S × S → S

that behave as their names indicate. For example, some values of these functions should
be:

not(0) = 1
and(1, 1) = 1
and(0, 1) = 0.

Verify that your functions yield correct results in all cases.

2. Suppose that you are given only the definitions of the logic operators negation and
conjunction with truth tables. Define the operators disjunction, conditional, and
biconditional in terms of the two given operators (without using truth tables).

3. Define DERIVE functions:

or: S × S → S
imp: S × S → S
iff: S × S → S.

Hint: Use the definitions developed for the two preceding questions.
Verify that your functions yield correct results in all cases.

The students are amazed to find that they can actually use the theorems that we have
studied. After defining the first two functions using algebraic expressions:

 not(p) := 1 - p and and(p, q) := pq,
the other functions can be defined directly from the laws of propositional logic. For
example, the following definition of the function or is based on DeMorgan’s law:

or(p, q) := not(and(not(p), not(q)).
Similarly, the students can define the conditional function imp and biconditional function
iff essentially by stating theorems:

imp(p, q) := or (not(p), q) and iff(p, q) := and (imp(p, q), imp(q, p)).
When the defining expressions are simplified in DERIVE, their algebraic form is returned.

In the next assignment, both the predefined logic functions and the student-defined
functions are used. Sets are represented by DERIVE vectors, and recursion is introduced
by giving a recursive function definition for the students to examine. The computer
science students, in a course on programming languages that they will take later, will
recognize the similarities between this use of recursion applied to DERIVE vectors and
the recursion applied to lists in the programming language LISP. The students are
required both to test functions and to write explanations of the definitions of these
functions. The student groups work outside scheduled class time on the following
problems.

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 4

1. Define functions FIRST and TAIL that take a vector as input. The function
FIRST returns the first component of the input vector, and the function TAIL
returns the vector obtained by deleting the first component of the input vector.
For example, FIRST([15, 2, 8, 19]) = 15, and TAIL([15, 2, 9, 19]) = [2, 9, 19].
Test your functions on the following vectors: [], [3], [4, 0, 1], and [true, false,
false, false, false]. Write detailed descriptions of your definitions.

2. Define a function CHECK of two variables: the first variable is a vector v of
two components and the second variable is a value n. The function checks to see
of the first component of the vector v equals n. For example,

CHECK([1, false], 2) = false, and CHECK ([1, false], 1) = true.
Test your function CHECK , and write a complete description of your definition.

3. The function VAL defined below is a function of two variables: a predicate p
expressed as a vector and a value n. This function evaluates the predicate p on n
whenever p is defined on n. For example, if we consider:

p := [[0, true], [1, false], [2, true]],
then we want:VAL(p, 0) = true, VAL(p, 1) = false, and VAL(p, 2) = true .
The definition of VAL is recursive because its definition refers to itself:

VAL(p, n) := IF (DIMENSION(p) = 0, false, CHECK(FIRST(p), n)
 AND (FIRST(p)) SUB 2 OR (VAL(TAIL(p), n))

Test the function VAL , and write a complete description of how VAL computes
the desired result. Try to think of a different definition for the function VAL .

4. Define functions ALL and EXISTS of two variables: a set s (represented as a
vector) and a predicate P. The functions check to see if all or at least one member
of the set s has the property P, respectively. For example, if we use P of question
#3, we want the following to hold: ALL([0, 2], P) = true, ALL([0, 1, 2], P) =
false, EXISTS([1, 2], P) = true, and EXISTS([1], P) = false.
Test your functions, and write complete descriptions of their definitions.

Now we will identify the logic constants true and false with the integers 1 and 0,
respectively.

5. Describe how the following vectors can be interpreted as predicates. What is
the domain of each predicate?

IS_ODD1 := VECTOR([i, MOD(i, 2)], i, 1, 10)
IS_EVEN1 := VECTOR([i, 1 - MOD(i, 2)], i, 1, 10)
IS_ODD2 := VECTOR([i, MOD(i, 2)], i, -100, 100)
IS_EVEN2 := VECTOR([i, 1 - MOD(i, 2)], i, -100, 100)

6. Define a function val that corresponds to the function VAL .

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 5

7. Test the following function and describe how it computes the desired value:
exists(S, P) :=

STEP (SUM (val(P, S SUB i), i, 1, DIMENSION(S)) - 0.5)
For example, exists([1,3,2], IS_ODD1 = 1, and exists([8,4,0,6], IS_ODD1) = 0.
Try to think of a different definition for the function exists.

8. Define an analogous function all. Test the function all and describe how the
desired result is computed.

9. Use the functions all and exists with particular predicates p and q, and sets s
to show that the following arguments are invalid:

If there exists x in S such that P(x), then for all x in S, P(x).
If for all x in S either P(x) or Q(x), then either for all x in S P(x) or for all x
in S Q(x).
If for all x in S P(x) implies that for all x in S Q(x), then for all x in S P(x)
implies Q(x).

Explain how your examples show that the arguments are invalid.

The next exercises are related to the students’ study of sets. Students are required to
define, test, and describe DERIVE predicates that test whether or not an element is a
member of a set, one set is a subset of another set, two sets are equal, and two sets are
disjoint. In addition, students define, test and describe DERIVE functions that return the
union, intersection and difference of two sets. They test and describe a given doubly-
recursive function set that removes any multiple occurrences of an element in a vector
representing a set. Some student groups use mathematical rather than exclusively
programming ideas to implement the functions. For example, one group used the function
set and the function intersection, which they had just defined, in their definition of the
function is-subset:

is_subset(v, w) := IF(intersection(v, w) = set(v), 1, 0, 0).

Their definition worked, but it depended on the particular definitions of the auxiliary
functions to keep the order of the sets’ elements consistent.

Further problems involve functions and relations with finite domains. These functions and
relations are represented in DERIVE as vectors whose elements are vectors of dimension
two. This representation of functions and relations implements their definitions as sets of
ordered pairs of elements. Students define DERIVE predicates that test whether or not
such a vector defines a function, an injection, a surjection, or a bijection, and they also
define DERIVE functions that, given a function represented as such a vector, return the
domain, range, restriction to a set, and value on an element of this function. Predicates on
relations that test for reflexivity, symmetry, transitivity, and antisymmetry also are defined.

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 6

Explorations with DERIVE

In the Discrete Mathematics course, the methods of proof studied are illustrated with
theorems of elementary number theory. Students use examples generated by DERIVE to
investigate and to make conjectures as part of their study of number theory. Several such
question follow.

1. Describe all integers a, b, and c for which the following statement is true:
 If a divides c and b divides c, then their product ab divides c. Use DERIVE to
 generate many examples, and then make a conjecture. Prove your conjecture.
 Hint: Use the VECTOR function to generate tables of the vector [a, b, c, t],
 where t is the truth value of the given statement for the particular values of a,
 b, and c.

2. Suppose that a and b are integers. Consider the following equalities:

GCD(a, b) = GCD(a + b, a - b) (*)
2 * GCD(a, b) = GCD(a + b, a - b) (**)

 Use examples generated by DERIVE to help you answer the questions below.
 Then precisely state and prove your four conclusions.

a. For which integers a and b does the equality (*) hold?
b. For which integers a and b does the equality (**) hold?

 Hint: DERIVE commands such as the one below quickly generate many
 examples:
 VECTOR (VECTOR([a, b, IF (GCD(a, b)=GCD(a + b, a - b))],

a, 1, 10), b, 1, 6)

No student group has completely solved the second problem. Although one group did
make a correct conjecture with the most general solution, that group did not prove this
conjecture correctly despite several submissions of proofs. Other groups have been able
to prove their correct conjectures that did not provide the most general solution to the
problem.

An assignment on mathematical induction requires the student groups to make conjectures
about predicates defined on subsets of integers, and in particular, to discover the base
case. Here again the VECTOR function allows the student groups to observe many
cases. Two such problems that I have assigned follow:

1. Investigate the predicate: The positive integer n divides (n - 1)! + 1.
Formulate a conjecture. Prove your conjecture.

2. Which Fibonacci numbers are even, and which are odd? After investigating

with DERIVE, state and prove your conclusions.

Since DERIVE “knows” the standard closed forms of finite sums and products, such as

Proceedings of The Third International DERIVE/TI-92 Conf erence

Hagelgans: Learning Discrete Mathematics with DERIVE Page 7

the sum of the first n positive integers, related problems are not suitable for student
investigation. On the other hand, students are interested in hearing that these formulas are
available and useful.

Conclusions

Students find these assignments very challenging, but most groups are highly successful.
The students frequently work alone on the problems as preparation for the meetings of
their groups so that they can use their time together effectively. The students work many
hours on the problems, and they persist until they obtain correct results on difficult
problems. While the students are working together in their cooperative learning groups,
they are discussing mathematical ideas, and they are developing their problem-solving
ability as they analyze each problem. Students must understand the involved mathematical
concepts before writing correct DERIVE functions to implement these concepts.

Students generally have a positive attitude toward the class, and they are proud and
relieved when they solve these problems. The computer algebra system DERIVE affords
the capability of generating many examples for exploration, and it allows to students to
verify their conjectures.

References

Baxter, Nancy; Dubinsky, Ed; Levin, Gary, Learning Discrete Mathematics with ISETL,
Springer-Verlag, New York, 1989.

Epp, Susanna S., Discrete Mathematics with Applications, Second Edition, PWS
Publishing Co., Boston, 1995.

Hagelgans, Nancy L., “Constructing The Concepts Of Discrete Mathematics with
DERIVE”, The International DERIVE Journal, V 2, No.1, 1995.

Hagelgans, Nancy; Reynolds, Barbara; Schwingendorf, Keith; Vidakovic, Draga;
Dubinsky, Ed; Shahin, Mazen; Wimbish, Joseph, A Practical Guide To Cooperative
Learning In Collegiate Mathematics, MAA Notes Number 37, Mathematical Association
of America, 1995.

	Introduction
	The Initial Experiences with DERIVE
	Projects on the Concepts of Discrete Mathematics
	Explorations with DERIVE
	Conclusions
	References

	Return:

