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Abstract

Texas Instruments has announced the Plus Module for the TI-92 with Advanced
Mathematical Software.  Among the many improvements offered on this plug-in module are
substantial new capabilities for matrix computations.  We will explore some of the ways to
combine the symbolic, numerical, and graphical capabilities of the TI-92 Plus for linear
algebra topics.

Eigenvalues and Eigenvectors

It is nicer to start with real eigenvalues.  For a random 4 × 4 matrix (using integer entries from –9
to 9) this does not immediately happen.  However, if we repeated execute the command line to
generate a random matrix and compute its eigenvalues, we soon get an example with all real

eigenvectors.   Continuing, we can show how
this matrix can be diagonalized knowing the eigenvalues and eigenvectors.
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For 2 × 2 matrices, it is nice to add eigenvectors to the graphical understanding of a linear
transformation.  First we create a matrix with known eigenvalues and eigenvectors by reversing
the steps above.

Then we use the following TI–92 program to display an initial parallelogram with the input side
vectors b = [b1, b2]T and c = [c1, c2]T and the transformed parallelogram with side vectors A b
and A c.

parallel()
Prgm
Local b1,b2,c1,c2,tb1,tb2,tc1,tc2,atemp
ClrIO:ClrDraw:ClrGraph:FnOff
Prompt b1,b2,c1,c2
Line 0,0,b1,b2:Line 0,0,c1,c2
Line b1,b2,b1+c1,b2+c2:Line c1,c2,b1+c1,b2+c2
Pause
a*[[b1][b2]]>>atemp:atemp[1,1]>>tb1:atemp[2,1]>>tb2
a*[[b1][b2]]>>atemp:atemp[1,1]>>tc1:atemp[2,1]>>tc2
Line 0,0,tb1,tb2:Line 0,0,tc1,tc2
Line tb1,tb2,tb1+tc1,tb2+tc2:Line tc1,tc2,tb1+tc1,tb2+tc2
PxlText "det(a)="&string(det(a)),1,1
EndPrgm

  input arbitrary  b = [2, 1]T,  c = [–1, 1]T input eigenvectors   b = [1, 1]T,  c = [2, 1]T

For any input vectors, a parallelogram is transformed into another parallelogram, with the det(a)
giving the factor of change for the area of the transformed parallelogram.  However inputting the
eigenvectors gives a much clearer picture of the ways things are “stretched” in the transformation.

Solving Systems of Linear Equations

The recommended method for numerically solving a nonsingular matrix equation  A x  = b
consists of the following steps:

    1. Use Gauss elimination with partial pivoting to decompose the matrix A so that  L U =
P A  where L  is a lower triangular matrix with ones on the diagonal, U is an upper
triangular matrix, and P is a permutation matrix chosen to minimize rounding errors
in the elimination process.

    2. Permute the entries of b  (e.g. find  c = P b).
    3. Use forward substitution to solve the triangular system  L y = c.
    4. Use backward substitution to solve the triangular system  U x = y.
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Since the TI-92 Plus provides the LU decomposition (in both exact and numerical form), we can
explore these steps individually.  Consider a 5 × 5 Hilbert matrix as the matrix A = {aij} =
{1/( i+j–1)}.
Hilbert matrices are frequently used as test matrices (see N. J Higham, Accuracy and Stability in
Numerical Algorithms, SIAM, 1996, Chapter 26).  Even though an exact formula is known for
the inverse of a Hilbert matrix (and all entries are integers), the condition number for a Hilbert
matrix is very large and numerical solutions will be subject to significant rounding errors.  We can
explore this in several ways.  First we create a right-hand-side b which is the floating-point
approximation for a system which has exact solution x = [1, 1, 1, 1, 1]T.  Then we numerically go
through the solution steps to try to recover x.

We can see the effects of rounding in floating-point computations by how the final results differ
from the exact solution x = [1, 1, 1, 1, 1]T. If we add the variable e to the first component of b
and redo the computations, we can see how a change in this component effects the final solution.

Orthogonal Decompositions

While the LU decomposition still works for a nonsquare matrix, a far more useful matrix
factorization is the QR decomposition.  Here  A = Q R where Q is a matrix with orthogonal
columns and R is an upper triangular square matrix.  If we wish to “solve  A x = b in a least
square error sense,” this can easily be done by solving  R x = QT b in the case where A has full
column rank (i.e. when R is nonsingular).

Suppose we are given the coordinates for five points in the plane which nearly lie on circle.  For
example, consider {(4, 1), (5, 2), (4, 4), (2, 4), (1, 2)}.  Then we can set up the five equations in
three unknowns that we would like to solve in a least square sense.

(x – h)2 + (y – k)2 = r2    becomes    2 x h  +  2 y k + c  =  x2 + y2  where  c = r2 – h2 – k2.
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If we define A and b for this system, give the command  QR a,q,r : simult(r,qT*b)
we find there that  h = 279/94 ≈ 2.96808510638,    k = 453/188 ≈ 2.40957446809, and c = –
1027/94 ≈ –10.9255319149.  This implies that r = √(130421)/188 ≈ 1.9209493489.  We have
used a statistical plot of the data and the Circle command to get a plot in the figure above.
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