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We begin with explorations examining the long term behavior of some population models
to discover the need for terminology and theory for studying limits.  Students have to do
plenty of computing to see populations that grow without bound, populations that always
approach a limit, and some that approach cyclic behavior.

Suppose the population of a species of temperate zone insects numbers 2,000 in 1996 and
2,200 in 1997.  The ratio of the current generation to the previous generation,1.1,
indicates that the net population growth for the first year is 10%.  Assuming the growth
rate will be the same every year, what will the population figures be for several years?

This type of model is described by an equation of the form pn+1 = Rpn , where R is a
constant called the population multiplier . After  experimenting, students notice that
when R > 1, the population increases, when R = 1, the population remains constant, and
when R < 1, the population decreases.

Let’s consider another model.  Suppose a species lives in an unfavorable habitat.
Although 20% die in a given generation, 100 more of the species immigrate to the habitat
at the end of each generation.  Will this species die out eventually?  Given the initial
population is 200, the model is described by the recursion formula
pn+1 = 0.8pn + 100, p0 = 200.  Investigating the time series plot and table on the TI-92
produces the following:

Figure 1.  Model: Figure 2.  Time series plot of model
pn+1 = 0.8pn + 100, p0 = 200 pn+1 = 0.8pn + 100, p0 = 200

The time series plot (Figure 2) illustrates graphically that the population appears to be
leveling off or approaching a limit of about 500.
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Figure 3.  Table for n = 0, …, 7 Figure 4. Table for n = 33, …, 40

From also observing the iterations on the table (Figures 3 and 4), it appears that after 30
generations the population is leveling off or approaching a limit of about 500.

Add another column to the table.  Take the absolute value of the difference between the
current population and the apparent limit , 500, (a reasonable guess).

 
Figure 5.  Table for n = 0, …, 6 Figure 6. Table for n = 7, …, 13

Figure 7. Table for n = 28, …, 34 Figure 8. Table for n = 34, …, 40

When will the population be within a toleranceε   = 20 of 500?  That is, when will
|pn - 500| <  20?  Looking at the table (Figure 6), for n >  13, |pn - 500| < 20.  We say a
sequence of numbers, p1 , p2 , p3 , ...  approaches a limi t L ( lim n → ∞   pn = L), if for
every tolerance ε  > 0, there is some N such that for every n > N, |pn - L| < ε .  From your
experimental evidence it appears that the population is approaching a limit of 500.  How
can you know for sure that this continues?  Use the definition of limit of a sequence to
verify that 500, (the equilibrium point of the linear discrete dynamical system) is the limit
of the sequence pn  as n goes to infinity.

The population stabilizes (reaches an equilibrium poin t) whenever the population
remains the same after subsequent generations.  In other words,
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pn  = pn+1  = pn+2   = pn+3    … = x.  Mathematically speaking, an equilibrium point  of the
recursion formula pn = f( pn-1 ) is a solution to the equation x = f(x).  In this case
x = .8x+100.  Therefore, the equilibrium point is 500.  After much experimentation,
students can be guided to conjecture and later prove that if a discrete dynamical system
has a limit, then the limit is an equilibrium point.

Figure 9.  Cobweb plot

The cobweb plot (Figure 9) exhibits the relationship between the input (number of
inhabitants in the current generation) on the horizontal axis and the output (number of
inhabitants in the next generation) on the vertical axis. Observe that in this model the
population will be very close to the equilibrium point after many generations.  It is clear
that lim n → ∞  pn = 500.  The sequence is "staircasing in" toward the equilibrium point.
In this case the equilibrium point is "attracting ".

In exponential models the population multiplier remains constant.  However, many factors
such as weather or competition with another species can affect the population multiplier.
To get a more realistic model we need to replace the constant population multiplier, R,
with a function, R(p), that depends on the population.  Let R(p) = a(1 - bp) where a and b
are constants.  This is the logistic population model  pn+1 = a (1 - bpn) pn  where positive
constants a and b describe the underlying biology.  The constant a determines the value of
the population multiplier when the population is close to zero and there is very little
competition for resources and b determines how quickly the population multiplier falls as
the population rises depending on the amount of resources such as food, water and
shelter. Given the model and an initial condition p1 = k, a positive constant, students can
calculate p2 , ... ,  p20  and draw a time series graph.  They can be instructed to try to
connect the biology represented by different values of p1  and of the constants a and b in
the model with the behavior exhibited by the models when describing the results.  Figures
10 and 11 illustrate that the model pn+1 = 2.7 ( 1 - 0.001pn ) pn , p0 = 50 predicts that the
population seems to be approaching a limit near 630.

Figure 10.  Time Series Plot Figure 11.  Table for n = 13, ... , 20
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Figures 12-15 illustrate that the model pn+1 = 3.4 ( 1 - 0.001pn ) pn , p0 = 50 predicts that
the population seems to be a 2-cycle bouncing between approximately 453 and 843 and
not approaching a limit.

Figure 12.  Time series plot of model Figure 13.  Time series plot of model
pn+1  = 3.4 ( 1 - 0.001 pn ) pn , p0 = 50 pn+1  = 3.4 ( 1 - 0.001 pn ) pn , p0 = 50

Figure 14. Table for n = 0, ... ,7 Figure 15.  Table for n = 13, ... , 20

 Students can work in groups using time series and cobweb analysis to investigate what
differences the coefficient a causes in the logistic population model
f(p) = apn ( 1 - bpn ).  They can be guided to make conjectures and, eventually, prove
them.   This learning technique has been very effective in my classes.

The TI-92  includes not only the graphing and table features, but also a computer algebra
system.  These capabilities facilitate investigating equilibrium points.  For example, it can
solve the equation p =   a ( 1 - bp ) p symbolically as well as draw the cobweb plot graph
showing the two intersection points of  y = a ( 1 - bp ) p and y = p.

Figure 16.  Script Figure 17.  Solving symbolically

The analytic solution is displayed in Figures 16 and 17.  Figure 16 portrays how  lab
exercises can be set up as a script file in the text editor with executable commands.
Furthermore, the cobweb plot portrays whether the equilibrium point is attracting or
repelling.               
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Figure 18.  Cobweb plot of model Figure 19.  Cobweb plot of model
pn+1  = 2.7 ( 1 - 0.001 pn ) pn , p0 = 50 pn+1  = 3.4 ( 1 - 0.001 pn ) pn , p0 = 50

In Figure 17 the cobweb pictures the population climbing stairs, spiraling in on the
nonzero equilibrium point and approaching the limit near 630.  We call this an attracting
equilibrium point.  On the other hand,  Figure 18 reveals a 2-cycle bouncing between
approximately 453 and 843 and not approaching a limit. Therefore it is not an attracting
equilibrium point.  It is repelling.  These results agree with previous observations made
examining the time series plots.  At this point, after experimenting with many models,
students make the conjecture that if the logistic population model approaches a limit, then
the limit is an equilibrium point.

During the course of the semester students can return to the logistic population model as a
discrete dynamical system to motivate the study of the derivative and composition of
functions.  Later in the year they can also extend the study to continuous dynamical
systems.
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