
Proceedings of the Third International DERIVE/TI-92 Conf erence

Linear Algebra Activities on the TI-92 Plus
Dr. Dennis D. Pence

 Department of Mathematics and Statistics
 Western Michigan University

 Kalamazoo, MI 49008-5152 USA
 dennis.pence@wmich.edu

Abstract

Texas Instruments has announced the Plus Module for the TI-92 with Advanced
Mathematical Software. Among the many improvements offered on this plug-in module are
substantial new capabilities for matrix computations. We will explore some of the ways to
combine the symbolic, numerical, and graphical capabilities of the TI-92 Plus for linear
algebra topics.

Eigenvalues and Eigenvectors

It is nicer to start with real eigenvalues. For a random 4 × 4 matrix (using integer entries from –9
to 9) this does not immediately happen. However, if we repeated execute the command line to
generate a random matrix and compute its eigenvalues, we soon get an example with all real

eigenvectors. Continuing, we can show how
this matrix can be diagonalized knowing the eigenvalues and eigenvectors.

mailto:dennis.pence@wmich.edu

Proceedings of the Third International DERIVE TI-92 Conf erence

Pence: Linear Algebra Activities on the TI-92 Plus
Page 2

For 2 × 2 matrices, it is nice to add eigenvectors to the graphical understanding of a linear
transformation. First we create a matrix with known eigenvalues and eigenvectors by reversing
the steps above.

Then we use the following TI–92 program to display an initial parallelogram with the input side
vectors b = [b1, b2]T and c = [c1, c2]T and the transformed parallelogram with side vectors A b
and A c.

parallel()
Prgm
Local b1,b2,c1,c2,tb1,tb2,tc1,tc2,atemp
ClrIO:ClrDraw:ClrGraph:FnOff
Prompt b1,b2,c1,c2
Line 0,0,b1,b2:Line 0,0,c1,c2
Line b1,b2,b1+c1,b2+c2:Line c1,c2,b1+c1,b2+c2
Pause
a*[[b1][b2]]>>atemp:atemp[1,1]>>tb1:atemp[2,1]>>tb2
a*[[b1][b2]]>>atemp:atemp[1,1]>>tc1:atemp[2,1]>>tc2
Line 0,0,tb1,tb2:Line 0,0,tc1,tc2
Line tb1,tb2,tb1+tc1,tb2+tc2:Line tc1,tc2,tb1+tc1,tb2+tc2
PxlText "det(a)="&string(det(a)),1,1
EndPrgm

 input arbitrary b = [2, 1]T, c = [–1, 1]T input eigenvectors b = [1, 1]T, c = [2, 1]T

For any input vectors, a parallelogram is transformed into another parallelogram, with the det(a)
giving the factor of change for the area of the transformed parallelogram. However inputting the
eigenvectors gives a much clearer picture of the ways things are “stretched” in the transformation.

Solving Systems of Linear Equations

The recommended method for numerically solving a nonsingular matrix equation A x = b
consists of the following steps:

 1. Use Gauss elimination with partial pivoting to decompose the matrix A so that L U =
P A where L is a lower triangular matrix with ones on the diagonal, U is an upper
triangular matrix, and P is a permutation matrix chosen to minimize rounding errors
in the elimination process.

 2. Permute the entries of b (e.g. find c = P b).
 3. Use forward substitution to solve the triangular system L y = c.
 4. Use backward substitution to solve the triangular system U x = y.

Proceedings of the Third International DERIVE TI-92 Conf erence

Pence: Linear Algebra Activities on the TI-92 Plus
Page 3

Since the TI-92 Plus provides the LU decomposition (in both exact and numerical form), we can
explore these steps individually. Consider a 5 × 5 Hilbert matrix as the matrix A = {aij} =
{1/(i+j–1)}.
Hilbert matrices are frequently used as test matrices (see N. J Higham, Accuracy and Stability in
Numerical Algorithms, SIAM, 1996, Chapter 26). Even though an exact formula is known for
the inverse of a Hilbert matrix (and all entries are integers), the condition number for a Hilbert
matrix is very large and numerical solutions will be subject to significant rounding errors. We can
explore this in several ways. First we create a right-hand-side b which is the floating-point
approximation for a system which has exact solution x = [1, 1, 1, 1, 1]T. Then we numerically go
through the solution steps to try to recover x.

We can see the effects of rounding in floating-point computations by how the final results differ
from the exact solution x = [1, 1, 1, 1, 1]T. If we add the variable e to the first component of b
and redo the computations, we can see how a change in this component effects the final solution.

Orthogonal Decompositions

While the LU decomposition still works for a nonsquare matrix, a far more useful matrix
factorization is the QR decomposition. Here A = Q R where Q is a matrix with orthogonal
columns and R is an upper triangular square matrix. If we wish to “solve A x = b in a least
square error sense,” this can easily be done by solving R x = QT b in the case where A has full
column rank (i.e. when R is nonsingular).

Suppose we are given the coordinates for five points in the plane which nearly lie on circle. For
example, consider {(4, 1), (5, 2), (4, 4), (2, 4), (1, 2)}. Then we can set up the five equations in
three unknowns that we would like to solve in a least square sense.

(x – h)2 + (y – k)2 = r2 becomes 2 x h + 2 y k + c = x2 + y2 where c = r2 – h2 – k2.

Proceedings of the Third International DERIVE TI-92 Conf erence

Pence: Linear Algebra Activities on the TI-92 Plus
Page 4

8

10

8

4

2

2

4

8

8

4

1

1

1

1

1

h

k

c
 =

17

29

32

20

5

If we define A and b for this system, give the command QR a,q,r : simult(r,qT*b)
we find there that h = 279/94 ≈ 2.96808510638, k = 453/188 ≈ 2.40957446809, and c = –
1027/94 ≈ –10.9255319149. This implies that r = √(130421)/188 ≈ 1.9209493489. We have
used a statistical plot of the data and the Circle command to get a plot in the figure above.

	Abstract
	Eigenvalues and Eigenvectors
	Solving Systems of Linear Equations
	Orthogonal Decompositions

	Return:

