
Proceedings of the Third International DERIVE/TI-92 Conf erence

A Computer Proof of the Central Limit Theorem
Peter Mitic

Positive Corporation Ltd.,
Medstead, Hampshire GU34 5EW,

England
peter_mitic@compuserve.com

Abstract

It is uncommon to apply computer algebra software to proof, especially for topics which
are rarely touched by computer algebra. In order to illustrate the efficacy of symbolic
computation in these respects, DERIVE is used in a statistical context to prove the
Central Limit Theorem and some advantages and disadvantages of using the techniques
outlined here are assessed. The proof is illustrated by simulating random experiments.

Introduction

The topic of proof is fundamental to mathematics, yet computer algebra software has had
little impact on proof, despite having become widespread in perform actual computations.
Proof and algebraic computation are intimately related, and this paper illustrates how a
progression can be made from the latter to the former. Three principal points are
illustrated.
1. Proof can be done as an inter-connected and logical sequence of algebraic operations,

which has to be set up correctly.
2. A proof can be illustrated heuristically, which adds meaning to its result.
3. Proof is applicable, and I is beneficial to see it, outside the confines of algebraic

computation alone.

In a previous discussion, (Mitic and Thomas 1995), I assessed the advantages and
disadvantages of using DERIVE to perform algebraic manipulations in a derivation of a
Normal distribution from a binomial distribution. DERIVE was used then, and is used
here, because it is widely available, but is hard to program if particular constructs are
required. Some of these problems are solved, allowing pre-programmed units to be used
in the heuristic phase of this discussion. The Central Limit Theorem provides a good
vehicle for this because it has a significant ‘set up’ phase, is simplified by using symbolic
computation in the ‘active’ part of the proof, and makes good use of an integrated
mathematical analysis environment in which computation, graphics and proof can all be
done. DERIVE is useful because of its simple interface and speed of operation, but there
are programming complications, which are eased using the more sophisticated
programming capabilities of, for example, Maple and Mathematica.

Simulations to Illustrate the Central Limit Theorem

mailto:peter_mitic@compuserve.com

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 2

As a preliminary to proving the Central Limit Theorem, the theorem is illustrated by some
sampling experiments. This provides some motivation for the proof itself, since without
seeing the theorem 'in action', it is harder to appreciate its impact. The simulations are
intended to show that the distribution of sample means 'looks' Normal, and is independent
of the background population. Consequently, a non-Normal background distribution is
illustrated here. There is a proviso that the sample size is 'sufficiently large', and this term
can be partially quantified with sufficient experimentation.

As an example, random numbers which are exponentially distributed with probability

density function ()f x
e x

x

x

=
≥
<





−2 0

0 0

2 ,

,
 are generated. DERIVE's random number

generator produces pseudo-random numbers which are uniformly distributed, and they
must be transformed so that they can be regarded as having originated from a non-uniform
distribution. (See, for example, Mitrani 1982). The required transformation for uniformly

distributed data is
() [)x

x
x→

−
−

∈
log

; ,
1

2
0 1 . The DERIVE code to generate 10 such

random numbers is:

APPROX(uniform01 := VECTOR(RANDOM(1), i, 1, 10), 6)

[0.835327,0.443197,0.797847,0.529578,0.924305,0.00408613,0.97003
,0.667271,0.220640,0.07573]

 LOG(1 - x)
F(x) := - — — — — — — — — — — — —

 2

APPROX(expran := VECTOR(F(x), x, uniform01))

[0.519000,0.0756450,0.632217,1.11895,0.282906,0.160367,0.111106,
1.23094,0.246345,0.00918248]

Many other background distributions can be simulated in this way, provided that the
distribution function concerned is invertible. This transformation is used to generate
means of samples of various sizes.

Frequency Counts and Graphs

It proved to be very difficult to produce grouped frequency counts for a vector of random
data, as generated above, despite the simplicity of the problem. For the continuous data
above, we might wish to classify into bins 0_0.1, 0.1_0.2, 0.2_0.3 etc., with a maximum
cut-off. To do this, it would be useful to implement a construct similar to the SWITCH
statement in C directly. This cannot be done because DERIVE does not support the

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 3

required memory variables external to procedures. Instead, a functional programming
solution must be adopted. A ‘brute force’ frequency counter is something like the
following, in which ‘bin’ boundaries are explicit numbers and v is the vector which we
wish to analyse.

FREQUENCYCOUNTER1(v) :=
SUM([IF(x < .25), IF(.25 <= x < .5), IF(.5 <= x < .75),
 IF(.75 <= x < 1), IF(1 <= x < 1.25), IF(1.25 <= x)], x, v)

In order to increase the usefulness of FREQUENCYCOUNTER1, we note that constructs
such as ()IF xα β≤ ≤ occur repeatedly, prepended and appended by terms of the form

()IF x < α and ()IF xβ ≤ respectively. In the following function, the bin boundaries are

held in a vector b and VECTOR is used to implement the repeated string of IF constructs.

FREQUENCYCOUNTER2(v,b):=
SUM([IF(x<ELEMENT(b,1)),
VECTOR(IF(ELEMENT(b,i)<=x<=ELEMENT(b,i+1)),i,1,DIMENSION(b)-1),
 IF(ELEMENT(b,DIMENSION(b))<=x)],x,v)

The result is a nested vector of the form [e1, [e2, e3, ... en-1], en], which is less useful than
the unnested form [e1, e2, e3, ... en-1, en]. This nested form may be 'flattened' by applying a
function FLATTEN, which removes the inner brackets by appending the third and
prepending the first element of v to the second element of v.

FLATTEN(v):=APPEND([ELEMENT(v,1)],APPEND(ELEMENT(v,2),
[ELEMENT(v,3)]))

Combining FREQUENCYCOUNTER2 and FLATTEN, we can define a function
FREQUENCYCOUNTER as below.

FREQUENCYCOUNTER(v,b):= FLATTEN(FREQUENCYCOUNTER2(v,b))

Because this coding is extremely tricky, it is more appropriate to simply use it, having
loaded the necessary code in an .MTH file. In this respect it is no different to any other
.MTH file, and might usefully form part of a Descriptive Statistics utility package. The
DERIVE session below shows how these functions are used on the random number data
generated already, and is a useful illustration of automated numerical manipulation.

ran := [0.519000, 0.0756450, 0.632217, 1.11895, 0.282906,
0.160367, 0.111106, 1.23094, 0.246345, 0.00918248]

bins := [0.25, 0.5, 0.75, 1, 1.25]

APPROX(FREQUENCYCOUNTER(ran, bins))

[5, 1, 2, 0, 2, 0]

Histograms can be produced from such frequency counts and bin boundaries, using code
similar to that of Etchells (Etchells 1992). Figure 1(a) shows a histogram which resulted

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 4

from generating 200 means of samples of size 3. Figure 1(b) shows a similar frequency
distributions based on samples of size 25. A frequency distribution for the background
population is shown in Figure 1(c). All parts of Figure 1 are shown to the same scale.

Figure 1(a)

Figure 1(b)

Figure 1(c)

The contrast between the form of the (exponential) background distribution and the
Normal-like sampling distributions is readily apparent, despite the small sample size of 3.
It is easy to verify that the same type of sampling distribution profiles also result from
other choices of background distribution and sample sizes, and that they look more
Normal as the sample size is increased. This, and similar experiments provide the
heuristic motivation behind the proof of the theorem.

The mean, m, and standard deviation, s, for each of the above, and additional, trials are
recorded in Table 1. It is seen that as the sample size, n, increases, the form of the

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 5

distribution approaches that of a Normal distribution, and clustering about the mean
becomes more pronounced. In all cases, the sampling mean is close to the background
population mean, 0.5. The standard deviations correspond reasonably well, especially for

larger values of n, to the theoretical result,
1

2 n
. It is important to stress that these

simulations only illustrate a proof, and that a rigorous analysis is required to advance
further.

 Table 1

n m s 1

2 n
3 .498 .282 .289
10 .507 .173 .158
25 .500 .097 .100
40 .495 .077 .079
50 .500 .074 .071

Simulations in Other Software

The simulations thus developed is static: we cannot see the a real-time development of the
histograms of the background and sampling distributions. This is desirable because seeing
profiles develop as sampling proceeds reinforces the conceptual background of the
Central Limit Theorem. In (Mitic and Thomas 95) I discussed several alternative software
packages for showing this type of simulation. In this context I developed a dedicated
Central Limit Theorem simulator in Visual Basic (version 3), in which dynamic simulation
of sampling distributions was realised for a variety of continuous and discrete
distributions. Running these simulations shows the sampling distribution clearly deviating
from its originating background distribution (which retains its ‘shape’), and tending to a
the ‘shape’ of a Normal distribution. The empirical relationships ms = m and ss = s/√n can
also be verified. Behind the scenes are diverse techniques for generating random numbers
distributions. Some (Monte Carlo simulations in particular) run too slowly in the VB
interpreted environment, but the same techniques implemented in a compiled C++
environment run much faster. An implementation in Excel VBA is very easy to program
but the desired dynamic aspect is a by-product and its position is unstable on the screen.
Minitab (version 9) proved to have inadequate programming facilities compared to Excel.
Of course, proof is not possible in any of these implementations. A Mathematica
implementation may be found in (Mitic 96). Programming the simulations is eased
considerably by the availability of memory variables.

Formulation of the Theorem

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 6

These sampling experiments give a visual impression of the impact of the Central Limit
Theorem, and we can use them to make conjectures about the form of the sampling
distribution, its mean and its variance. These provide the rationale for a formal statement
of the Central Limit Theorem. Mendenhall (Mendenhall 1986) gives a particularly clear
version.
Let Y

1
, Y

2
, ..., Y

n
 be independent and identically distributed random variables, each with

mean m and variance s
2
. Then Y

n
Yr

r

n

=
=

∑1

1

 is approximately Normally distributed with

mean m and variance
s

n

2

 for large n.

This is an example of a proof in which the preliminaries are considerable in any case, but
the proof is quick if a symbolic computation package is used. It is dependent on a
polynomial approximation for a moment generating function, and this causes some subtle
problems with DERIVE. The proof depends on simplifying the expression

()Lim MZ t
n→∞

1 , below, and recognising the result as the moment generating function of a

N(0, 1) distribution. The moment generating function of a discrete random variable X that

takes values between a and b inclusive is the sum () ()M t e P X xxt

a

b

= =∑ . For a

continuous random variable X with probability density function f(x), x∈[a,b], the moment

generating function is () ()M t e f x xtx= ∫ d
a

b

. M(t) can then be expressed in the form:

() () () () () ()M t t
M t

t

t M t

t
O t t

t
O t

t t

= +






+








 + = + + + +

= =

1
2

1
2

0

2

2

0

3 2 2
2

3d

d

d

d

2

! !
µ σ µ . The

proof is then set up as follows.

Let Zi = (Y
i
- m)/s , so µ = =Zi 0 and σ2 = var(Zi) = 1.

The moment generating function of each Zi can then be written as

() ()MZ t
t t

R t= + +1
2 3!

2 3

!
where R(t) is a power series in t which comprises moments of

Zi of degree 3 or more. This is the starting point for the DERIVE session, and we can
use the non-explicit function r(t), exactly as in a paper-and pen proof. We then define Un :

 U
Y

n

n

n

Y n Z

n
n

i i=
−

=
−







 =

∑ ∑µ
σ

µ
σ/

Since the Yi are independent, so are the Zi. Hence, the moment generating function of Un

is the product of the moment generating functions of the Z ni (the expression
()Lim MZ t

n→∞
1 , below). This provides the penultimate step of the DERIVE session. The

last expression is the moment generating function of a Normal(0,1) random variable, and
this result is established as a subsidiary result. Given that the moment generating function

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 7

for any given random variable is unique, this shows that Un has a Normal(0, 1)
distribution. Hence, the non-standardised random variable, Y , has a Normal(m, s2/n)
distribution. DERIVE is of great value here in obtaining the limit. Without simplification
of this step in the proof, enough algebra is involved to detract from the overall thrust of
the proof.

DERIVE Implementation

The following code shows the above formulation and implementation.

R(t) :=

 2
 t 3
MZ(t) := 1 + — — — — + t ·R(t)

 2

MZ1(t) := lim MZ(t)

 t˜t/‹n

 n
lim MZ1(t)
n˜–

 2
 t /2
ê

The DERIVE code below establishes the required result for the moment generating
function of a Normal(0,1) random variable. The need to explicitly declare a range for t is
useful because it is only too easy to ignore this type of condition in a pen-and -paper
proof, even though it is essential for the proof to be valid.
–
ˆ 2
¦ - x /2
¦ ê t·x
¦ — — — — — — — — — ·ê dx

‰ ‹(2·¹)
 -–

t :- Real (0, –)

 2
 t /2
ê

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 8

The method of coding the substitution of t by t/√n (() ()MZ t Lim MZ t
t

t

n

1 :=
→

) in the above

code should be noted. It works here because continuity is not violated, but will not work
if target functions are not continuous. Substitutions have to be done in this way using
DERIVE, and it can give the impression that such substitutions always work.

Although this proof works, it depends on the power series R(t), upon which no conditions
need be placed in order to obtain the correct result. This can cause further problems. The
method fails if t3 R(t) in MZ(t) is replaced by an apparently simpler, and more explicit,
term, R1(t). The simplification of the revised expression ()Lim MZ t

n→∞
1 cannot then be

done.

R1(t) :=

 • • t ‚2 ‚n
 ¦ ¦— — — — ¦ ¦
 ¦ • ‹n ƒ ¦
lim ¦1 + — — — — — — — — — + R1(t)¦

n˜– • 2 ƒ

?

Furthermore, if the R(t) term is set to zero we still recover a correct result (as below).
However, the heavy truncation involved makes the result somewhat dubious.

 • • t ‚2 ‚n
 ¦ ¦— — — — ¦ ¦
 ¦ • ‹n ƒ ¦
lim ¦1 + — — — — — — — — — ¦

n˜– • 2 ƒ

 2
 t /2
ê

These results indicate that great care must be taken when employing DERIVE, or any
other symbolic manipulator, in a proof such as this.

Unfortunately, this method fails completely in DERIVE version 2: expressions with the
arbitrary power series R(t) simplify to an incorrect result, 0. In this case it is necessary to
approximate R(t) by a linear polynomial a + bt. To justify this we use Taylor's Formula
with Remainder, which Apostol (Apostol 1957) presents as an extension to the First Mean
Value Theorem. There exists s in (0,t) such that R(t) = R(0) + t R'(s) for s in (0, t). Then

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 9

set a = R(0) and b = R'(s). The expression for MZ(t) is then () ()MZ t
t

a bt t= + + +1
2

2
3

and the method proceeds as before.

Momement Generating Functions: Some Warnings

Being able to calculate the moment generating function of a Normal(0,1) random variable,
as in the previous section, turns out to be something of a luxury. This cannot be done for
many other distributions as DERIVE cannot simplify defining expressions, as given by the
sums or integrals discussed previously, for their moment generating functions. The same
problem sometimes occurs when attempting to find means and variances directly from
probability density functions. However, once a result for the moment generating function,
M(t), of a random variable X has been found, it is easy to use it to compute the mean and
variance of X, using the formulae () ()µ σ µ= ′ = ′′ −M M0 02 2, . These can be defined in
DERIVE in a generic way as follows.

 d
MEAN(mgf, t) := lim — — mgf
 t˜0 dt

 • •d ‚2 ‚ 2
VARIANCE(mgf, t) := ¦lim ¦— — ¦ mgf¦ - MEAN(mgf, t)
 •t˜0 •dtƒ ƒ

Instantiating an actual moment generating function then yields the required results. For
example, using the continuous χ2(n) random variable, which has moment generating
function (1-2t)-n/2, we obtain µ = n and σ2 = 2 n.

 - n/2
MGFCHI2(t, n) := (1 - 2·t)

MEAN(MGFCHI2(t, n), t)

n

VARIANCE(MGFCHI2(t, n), t)

2·n

Similarly, the discrete Geometric(p) random variable has moment generating function

()
pe

p e

t

t1 1− −
, from which we obtain µ = 1/p and σ2 = (1-p)/p2.

 t
 p·ê
MGFGEOM(t, p) := — — — — — — — — — — — — — — — —

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 10

 t
 1 - (1 - p)·ê

Proceedings of the Third International DERIVE/TI-92 Conf erence

Mitic: A Computer Proof of the Central Limit Theorem Page 11

MEAN(MGFGEOM(t, p), t)

 1
— — —
 p

VARIANCE(MGFGEOM(t, p), t)

 1 - p
— — — — — — —
 2
 p

Conclusion

A convenient user interface made it easy to perform tedious algebraic manipulations and
construct a relatively simple proof. Using DERIVE is not without its problems and in
some cases, careful prior preparation must be done by hand because of theoretical
considerations which DERIVE cannot cope with. Building theory from scratch, which
has to be done if a computer algebra package is used, is advantageous because it does not
encourage mere use (or misuse!) of techniques without understanding. Programming in
DERIVE would be easier if memory variables were available, and I encourage the
development of this feature.

A number of other tasks are performed faster and with simpler programming by other
packages. In particular, dedicated statistical packages and spreadsheets can generate
random numbers, transform them, classify them and graph the results very quickly. The
aim here was to achieve more than that: algebraic proof and the flexibility to simulate
trials from an (almost) arbitrary probability distribution.

REFERENCES

Etchells, T. (1992) Investigating Probability Distributions with DERIVE, In Teaching
Mathematics with DERIVE (J Böhm, ed.) Chartwell-Bratt
Mitic, P. and Thomas, P. (1995) From the Binomial to the Normal: A Computerised
Proof, In Maths and Stats, Nov 1995, CMI Birmingham.
Mitic, P. (1995) Sampling Distributions for Random Data, In Mathematica in

Education and Research, 4, 3. (P.Wellin, ed.). Telos.
Mitic, P. and Thomas, P. (1996) The Central Limit Theorem - Visualised, In Teaching

Mathematics and its Applications. 15, 2. OUP.
Mitrani, L. (1982) Simulation techniques for discrete event systems. CUP.
Mendenhall, W., Schaeffer, R. and Wackerly, D. (1986) Mathematical Statistics with
Applications. PWS, Boston.
Apostol, T. (1957) Mathematical Analysis Addison-Wesley.

	Abstract
	Introduction
	Frequency Counts and Graphs
	Simulations in Other Software
	Formulation of the Theorem
	DERIVE Implementation
	Momement Generating Functions: Some Warnings
	Conclusion
	REFERENCES

	Return:

