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Since time immemorial problems concerning primes and their distribution have
captivated  both professionals and amateurs. This leads to the question whether this
obvious fascination emerging from primes could also be used in classroom teaching.
The main goal of my talk is to show that the answer is a definite “yes” and DERIVE
can be of great help on that score. (All computations in the following were carried out
on a Pentium 166 PC with 32 MB using DfW 4.09.)

Mersenne Primes or Mathematics for the Guinness Book of Records

Every now and then one can read in the newspaper that a new record prime had
been found , e.g. when the current “record holder” 2 13021377 −  was discovered by the
19 year-old student Roland Clarkson on January 27th, 1998. Clark, who was one of
over 4000 volunteers world-wide participating in the Great Internet Mersenne Prime
Search (GIMPS) founded by George Woltman, used a simple 200 MHz Pentium
computer part-time for 46 days to prove this 909526-digit number prime.

The obvious question arises, why anyone cares about finding a prime that big. Well,
the people of the GIMPS-project may do it for the glory or to learn more about the
distribution of Mersenne primes, it is true, but there are also less obvious answers. In
particular, those short and sweet programs provide an ideal hardware-test for the
computer as they are intensely CPU and bus intensive and the output can be easily
checked. For example, the program of George Woltron is now used by Intel to test
every Pentium chip before it is shipped. As a further by-product of the quest, Richard
Crandall has developed an improved version of the  wellknown algorithm by Schoen-
hage and Strassen using Fast Fourier Transforms for multiplying large integers.

Another question any teacher should be prepared to answer deals with the fact that
virtually all the past prime records are of the form 2 1p − , where p is a prime. (The
latter condition for p is clearly necessary, since a nontrivial divisor k of  p leads to the
nontrivial divisor 2 1k −  of 2 1p − .)  Numbers of this form are called Mersenne
numbers after the French monk Marin Mersenne  who stated in 1644 that the numbers
M p

p:= −2 1 were prime for p ≤ 257  if and only if p belongs to the set {2,3,5,7,13,17,

19,31,67,127,257}. For Mersenne numbers - and this is the answer to the question
above - an incredibly simple primality criterion holds:

Lucas-Lehmer Test (1930): Let the sequence s s1 2, ,...  of integers be recursively
defined by

s s sk k1 1
24 2= = −+,  (k ≥ 1)

Then for any odd prime p the Mersenne number 2 1p −  is prime if and only if it is a
divisor of sp−1.

To prevent the numbers sk  from getting unnecessarily large it is a good idea to
compute them mod Mp  only and to check finally whether s Mp p− ≡1 0 mod . A simple
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DERIVE-implementation to test m, where m is a Mersenne number Mp for some odd

prime, could look like this:

LUCAS_LEHMER(m) := IF(ITERATE(MOD(s_^2 - 2, m), s_, 4,
          LOG(m + 1, 2) - 2) = 0, true, false)

As an example we use it to check Mersenne’s list:

As the computation shows (in 1.2s !) Mersenne was mistaken five times: The
exponents 67 and 257 do not yield Mersenne primes as opposed to the missing
exponents 61,89 and 107.  By the way, the current list of all p’s,  where Mp is known

to be prime, consists of the following 37 numbers:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,
132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377

When it comes to testing these exponents with DERIVE, numbers below 10000 are a
matter of some minutes at most and numbers below 100000 are also within reach if
you can do some time without your computer, but I wouldn’t touch numbers above
that. For exponents > 4000 it may also pay off to use the following modification of the
built-in mod-function (for Mersenne numbers only!) that makes use of the simple
congruence A B A A B A B Mp p

p2 2 1+ = − + + ≡ +( ) ( ) mod :

MODM(n, m) := MOD((n AND m) + FLOOR(n, m + 1), m)

LUCAS_LEHMER(m) := IF(ITERATE(MODM(s_^2 - 2, m), s_, 4,
          LOG(m + 1, 2) - 2) = 0, true, false)

The computation

    

takes 280.7s now vs. 305.5s with the old routine. (For bigger exponents the saving of
time may be hours!)

If a given Mersenne numbers Mp is proved composite by the Lucas-Lehmer test, we

are still left with the question how a nontrivial factorization for Mp  looks like. You

probably know the story of F.N.Cole who spend “three years of Sundays” on the
following factorization of M67  (cf. [1])

which takes DERIVE only 0.4s! But when trying to factor Mersenne numbers like
e.g. M257 DERIVE would have a very hard time, too!

Here are some hints which could make this task easier. First of all, it is known that
factors of a Mersenne number Mp  are all of the special form 2kp+1 where either

k ≡ 0 4mod or k p≡ − mod 4 holds. Therefore, it may be a good idea to start with trial
division dividing Mp  through all primes of the above form until a certain boundary is
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reached. If this fails, one must resort to one of the standard methods for factoring large
numbers. As an example, I have implemented a variant of Pollard’s (p-1)-method that
works very well if the number N in question has a prime factor q such that q-1 splits up
into many relatively small primefactors. By choosing e in a suitable way, e.g. as the
product of all prime powers up to a certain boundary, the chances are that e is divisible
by q - 1, which implies for any integer a coprime to N that

a a qe q e q= ≡− −( ) mod/( )1 1 1

and therefore q a Ne( , )− 1 .

In the following program we use numbers coprime to 210, i.e. not divisible by
2,3,5,7, instead of primes, because computing powers mod N is so fast that it doesn’t
pay off to discard composites. Moreover, they are even useful in providing powers of
the small primes. For a and s the default values 3 and ∞, respectively, are taken unless
you specify them otherwise.

PMINUS1(n, a, s) := GCD((ITERATE(IF(GCD(a_ - 1, n) > 1 OR IF(s < b_SUB2,
true, false, false), [a_, b_], [MOD(a_^PRODUCT(b_), n), b_ + [0, 210, 210, 210, 210,
210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210,
210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210,
210, 210, 210, 210, 210, 210, 210, 210, 210, 210]]), [a_, b_], [MOD(IF(a, 3, a,
3)^160030080000, n), [210, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149,
151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209]]))SUB1 - 1, n)

And here are some examples where you can see this routine at work.

These result were obtained in 0.3 s, 51.8 s and 469.6s, respectively. In particular, in the
second case this is more than ten times faster than the built-in factor routine, whereas
in the third case I cannot draw a comparison for understandable reasons. You can also
see that in all cases the preconditions for the factorization of q - 1 for the found prime
q are fulfilled which accounts for the amazing performance.

A lot of open problems are connected with Mersenne primes. Let me conclude this
chapter with a small sample of them(cf. [2]):

• Are there infinitely many Mersenne primes?

• Are there infinitely many Mersenne composites?

• Is every Mersenne number squarefree, i.e. a product of distinct primes?
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• Is every perfect number, that is a number which is two times the sum of its positive
divisors, of the form 21p

pM−  for some Mersenne prime Mp or - to put it in another

way as all even perfect numbers are of this form - do odd perfect numbers exist?

Fermat Primes or the Construction of Regular Polygons
with Compass and Straight-edge

In a way the Fermat primes are the counterparts to Mersenne primes being of the
form 2 1k + . Since any odd divisor i > 1 of  k yields the nontrivial divisor 2 1k i/ +  of
2 1k +  we see at once that k must be a power of 2. Numbers of the form

                                  Fm

m

:= +2 12   ( )m ≥ 0

are called Fermat numbers after Fermat who conjectured in one of his letters that all
these numbers must be prime, having noticed that this is true for m = 0,1,2,3,4.
Strangely enough, no other Fermat primes have been found so far and thus it could
well be that these are actually the only ones.

The counterpart to the Lucas-Lehmer test is

Pépin’s Test (1877): The Fermat number Fm  with m > 0 is prime if and only if

3 11 2( )/ modF
m

m F− ≡ − .

Similar to the Lucas-Lehmer test this is an extremely simple and fast test and an
implementation in DERIVE could look like this:

Although the computation time for the above example is surprisingly low (0.4s !)
this is rather deceptive because the growth of Fermat numbers is enormous and
somewhere in the region of m=16 or 17 are the limits of DERIVE. Using
supercomputers the first undecided case is not very much higher, namely m=24, which
again gives an impression of the rapid growth of these numbers.

Even so, there is still some hope that one can prove a given Fermat number
composite by finding a small nontrivial factor. Here we can make use of a theorem by
Euler who stated that every factor of a Fermat number Fm is of the form k m2 1+  for
some natural number k. (Actually, Euler was the first who proved Fermat wrong by
showing that 641 is a divisor of F5 .)

The following two DERIVE-routines can be used to compute a divisor t of Fm and

the corresponding k in the representation t = km2 12+ +  such that t s≤ or k s≤ , re-
spectively.

FFACTOR(m, s) := ITERATE(IF(MOD(2^2^m, t_) = t_ - 1, t_, IF(t_ > s, 1,
          t_ + 2^(m + 2), t_ + 2^(m + 2))), t_, 2^(m + 2) + 1)

FFACTOR_K(m, s) := (FFACTOR(m, s·2^(m + 2) + 1) - 1)/2^(m + 2)
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And here are some examples:

The first one deals with the huge Fermat number F1945 which according to Coxeter
has more digits than the estimated number of particles in our universe and therefore
can never be seen in full length. Nevertheless, DERIVE finds after only
11.7 s (!) the 587-digit divisor 5 2 11947⋅ +  of it. In the second example a list of all
Fermat numbers Fm with m ≤ 100  that have a nontrivial divisor km2 12+ +  with
k ≤ 100  is computed (in 21.2 s!)

As in the case of Mersenne numbers Pollard’s (p-1)-method may also be of great
help. The following example deals with the case m=10 that would have been a really
“tough” one when using the above method and takes only 0.2 s now!

What are Fermat numbers actually good for? Well, since their binary representation
apart from the first and the last bit consists of 0’s only and as they do not have small
prime divisors either, they are very well suited for certain purposes in cryptography
e.g. when it comes to choosing a public key e for the RSA-cryptosystem. Furthermore,
Fermat numbers are used in the algorithm of Schoenhage and Strassen mentioned
above. Last but not least, Fermat primes play an important role when it comes to
deciding whether for a given natural number n≥ 3 the regular n-gon can be
constructed with compass and staight-edge only. According to a theorem of Gauss this
is the case if and only if n is a power of 2 times a product of distinct Fermat primes. In
the following I would like to use DERIVE to deal with the case n = 17, which gave the
then 19-year old Gauss so much pleasure that he made up his mind to focus on mathe-
mathics rather than old languages.

What Gauss actually showed was that the equation

( ) / ( ) ...z z z z z17 16 151 1 1 0− − = + + + + =                             (*)

can be solved and - what is equally important - that its solutions can be obtained from a

finite set of rational numbers by applying the operations +,−, ⋅ , / and  a finite

number of times (let’s call such complex numbers radical expressions for short). For
example, ς π: /= e i2 17  is clearly a solution but this representation is not of the desired
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form. Gauss had the idea to consider for all positive divisors e of 16 the following
expressions

η ζ ζ ζ ζi
e

i i e i e i f i
( )

( ): ...= + + + ++ + + −2 1  , i = 0,1,...,e - 1

where ζ ζk

k

:= 3 , k = 0,1, ..., 15, and f:=16/e. Just to see what we are talking about let
us view these expressions on a DERIVE-screen. (Note that we had to change to the
letter z here, because the letter ζ  refers to Riemann’s ζ -function in DERIVE that will
be discussed later on.)

In particular, we can see in the last row of this matrix that ζ ζ ζo , ,...,1 15 is just a

rearrangement of the elements ζ ζ ζ, ,...,2 15. As we will see, it is exactly this rearrange-
ment that plays a decisive role in Gauss’ proof that all expressions in the matrix above
(in particular the roots of our equation in the last row!) are radical expressions. This is
clearly true for ζ0

1 1( ) = − . For ζ0
2( )  and ζ1

2( )  we have the following equations

ζ0
2( ) +ζ1

2( ) = − 1,   ζ0
2( ) ζ1

2( ) =  − 4

Only the second one needs a proof which can be given by means of the following
DERIVE-routine that reduces any polynomial expression in ζ modulo any given
polynomial equation in ζ (in our case, of course, this will be always equation (*)):

RED(u, v) := ITERATE(RHS(v)·QUOTIENT(u_, LHS(v)) + REMAINDER(
          u_, LHS(v)), u_, u)

And here is the proof of the second equation given by DERIVE!

But this means that ζ0
2( )  and ζ1

2( )  are both the roots of the quadratic equation

w w2 4 0+ − =
with rational coefficients which implies that they too are radical expressions! After
solving this equation with DERIVE, we have a small problem: Which of the two
solutions is ζ0

2( ) and which one is ζ1
2( ) ? Again, DERIVE is of great help:
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In a similar way we compute η0
4( )  and η2

4( ) :

The results for η1
4( )  and η3

4( )  only differ from these by the sign of 17:

Now we are ready to put the finishing touches:
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Since cos(2π/17) = η0
8( ) /2 is a radical expression, the same must be true for

sin(2π/17) and hence for ζ π π= +cos( / ) sin( / )2 17 2 17i . This concludes the proof
that a regular 17-gon can be constructed using only compass and straight-edge. It goes
without saying that the same reasoning applies to the regular 257-gon and 65537-gon,
though the latter case isn’t exactly a pushover even for DERIVE!

On the Distribution of Primes or the
Glory and Misery of Experimental Math

There are two facts concerning the distribution of primes which are most striking
and seem to contradict each other. On the one hand, their occurence in short intervals
is extremely irregular and unpredictable, on the other hand, when viewed at large,
amazing regularities become visible. As an introductory example, let’s have a look at
the graph of the function 2log(p(n)), where p(n) denotes the n-th prime leading to a
Mersenne prime ordered by size. (As of today, this function is known without any gaps
for n = 1,2,...,35 only.)

Assuming that NUMBER.MTH had been loaded before, you can do this by
approximating the vector

and plotting the result.

Since the independence is strikingly close to linearity, from a statistical point of view
the obvious next step is to draw the regression line.
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By heuristic reasoning the slope of this line should be e−γ , where γ  is Euler’s
constant defined by

γ: lim( / log )= −
=

∑1
1

k n
k

n

We are facing here a typical dilemma that occurs quite often when dealing with the
distribution of primes: On the one hand, we can’t even prove that there are infinitely
many Mersenne primes, but when accepting some plausible assumptions we can do
even more, namely set up a formula that reflects their growth to infinity.

When speaking of the distribution of primes there are several functions that come
into play in a natural way. One of them is π( )x  which counts for a positive real
number x the number of primes below x. According to the Prime Number Theorem,
which was conjectured by Legendre and Gauss and proven by Hadamard and de la
Vallée-Poussin in 1896, π( )x  is asymptotically equal to x/ln x and also to the so-called
logarithmic integral

li(x):= dt t
x

/ ln
0
∫

that is, the relative error when replacing π( )x by one of these functions goes to 0 as x
goes to infinity. In particular, we may conclude from this that the “density of primes”
in a small interval around x should be close to 1/ln x.

Unfortunately, at present π( )x is not available as a DERIVE-function, but for small
values of x, say x < 100 000, the following implementation should suffice:

PRIMEPI(x) := LIM(SUM(PRIME(k_), k_, 1, x), [true, false], [1, 0])

It was used to produce the following graphs (note that li(x) should be implemented as
1.045+ INT(1/lnt,t,2,x) to avoid the singularity at x=1):
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Judging from these graphs only one might be tempted to say that x/ln x is always
below π( )x  (apart from the small region x ≤ 17) and li(x) is always above it. This also
remains true when looking at larger tables for π( )x  that reach up to 1020 at present.
But only the first conjecture is true, whereas the second one is completely wrong.
What is more, Littlewood has proved that the difference li(x) − π( )x  changes its sign
infinitely often! This is clearly a warning that one shouldn’t jump to conclusions that
are only based on numerical evidence!

Another very important function related to the distribution of primes is Riemann’s
ζ-function. It is for complex numbers s with Re(s)>1 defined by

ζ( ) / ( )s p s

p

= − −∏1 1

where p runs through all primes, and by the fundamental theorem of elementary
number theory this can also be written as

ζ( )s n s

n

= −

=

∞

∑
1

By a standard method called “analytic continuation” ζ(s) can be defined on the entire
complex plane, and then it is analytic everywhere except for a pole of order 1 at s =1.
It is easy to see that ζ(s) has trivial zeros at -2,-4,-6,... and that all nontrivial zeros are
symmetric about the line Re(s)=1/2. According to the notorious Riemann hypothesis
(RH), which is probably the most important unsolved mathematical problem, all
nontrivial zeros are exactly on this line. In 1986 it was shown by Brent, van de Lune, te
Riele and Winter that the first 1 500 000 001 nontrivial zeros do indeed have real part
½, but we already know that numerical evidence can be misleading.

There are a lot of equivalent formulations of  RH and some of them are quite
interesting. First of all, Koch showed in 1901 that RH is equivalent to

π( ) ( ) ( ln )x li x O x x= + .

(The meaning of f(x)=O(g(x)) is that f(x)/g(x) is bounded.) Roughly spoken, this
would imply that when approximating π(x) by li(x) about the first half of the digits
remain correct. By using more sophisticated implementations of PRIMEPI(x) (cf. [3])
this could be checked with DERIVE for any x < 109  in less than one hour.

Another equivalent formulation of RH is closely related to certain properties of
Moebius µ-function. Its definition can be easily deduced from the following DERIVE-
implementation:

MOEBIUS_MU(n) := PRODUCT(IF(PRIME(k_), -1, 0), k_, FACTORS(
          FACTOR(n)))

If the function M(n) is defined by M n k
k

n

( ): ( )=
=

∑µ
1

 for every natural number n, then

M n O nr( ) ( )=  for all r > 1/2
is equivalent to RH. Again, DERIVE could be used to check the growth of M(n) for
small values of n. In particular, one could try to replace µ in the definition of M by

RANDOM_MU(n) := IF(RANDOM(1) < 6/PI^2, (-1)^RANDOM(2), 0)

and would notice that there is seemingly not much difference as regards the growth of
M(n). If this were really true, this would imply the condition for M above and thus RH!
Since the assumed random behaviour of µ reflects only the fact that are no striking
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irregularities in the distribution of primes, RH means from a philosophical point of
view that primes behave as regularly as possible!

There are are lot of other interesting things that could be said about RH (cf. also [4]
as regards its relation to Farey fractions!) and the distribution of primes, but I hope I
have already reached my goal to show that exploring prime numbers with such a
powerful tool like DERIVE at hand can be very rewarding indeed.
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