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Introduction

The concept of generalized inverses of matrices was not developed until the 20th century

(cf. References). Whilst the inverse A−1  of a matrix A only exists if A is square and non-
singular, the generalized inverse (g-inverse) A−  exists for all matrices A. Any matrix
A−  satisfying the condition

AA A A− = (1)

is a generalized inverse of A. If A is square and nonsingular, we haveA A− −= 1, i.e. the
generalized inverse is unique. Otherwise, the number of generalized inverses of a matrix
is infinite.

Therefore, a special generalized inverse, the Moore-Penrose inverse (MP inverse) A+ ,
attracted greater attention. This matrix satisfies condition (1), i.e. AA A A+ = , and in
addition

A AA A+ + += (2)

A A A A+ +′ =3 8 (3)

AA AA+ +′ =3 8 (4)

assuring its uniqueness.

Until recently, these matrices did not play a principal role in first and second year foun-
dations in mathematics and statistics in such areas as economics and management sci-
ence. But with the availability of powerful computers in the classroom, it became possi-
ble to apply these modern concepts, for example to the solution of systems of linear
equations or to the linear regression model.

In this paper we demonstrate how DERIVE can be used to teach the concepts of general-
ized inverses and the Moore-Penrose inverse.

In Section 2 we will introduce an algorithm for the computation of a generalized inverse
of a matrix, and in Section 3 an algorithm for the computation of the unique Moore-
Penrose inverse will be presented. Both algorithms will be illustrated by examples.
In Section 4 we will see how the g-inverse can be used to check if solutions for a system
of linear equations Ax b=  exist and to provide the general solution. Some examples are
given to demonstrate how this method works for different matrices A, both regular and
singular.
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Computation of a generalized inverse

We now introduce an algorithm for the computation of a generalized inverse A−

×n m
 of any

matrix A
m n×

. This algorithm is based on the well known Gauss algorithm which is also

frequently applied to calculate the inverse A−1  of a regular matrix A. It comprises four
steps:

Step 1
We concatenate the identity matrix I   to the right of A:

A I
m n m m× ×

�
! 

"
$#

Step 2
By successively performing elementary row operations to the matrix A I , i.e.

• by multiplying A I  from the left with matrices Z i
m m×

, where the Z i  are elemen-

tary matrices, in order to transform A into the Hermite normal form,

Z A I Z A Z

Z Z A I Z Z A Z Z

Z A I ZA Z
H

1 1 1

2 1 2 1 2 1

=

=

=

=
�
! 

"
$#

� �

�

we get Z Z Z Z
m m

k k× −= 1 1� .

Step 3
If the resulting matrix H ZA=  is not already of the form

R
I K

=
�
!
 

"
$
#×r r

0 0
(5)

where r = =rank rankH A1 6 1 6 , we transform it into this form by interchanging the

columns. This is equivalent to multiplying H from the right with a permutation matrix
P

n n×
 which is equal to the identity matrix with interchanged columns (i.e. if H is al-

ready of the form (5) we have P = I ):

H Z P HP ZP

R ZP

=

=

Step 4
Having determined Z and P we can calculate a g-inverse of A by
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A P
I

Z−

× ×
×

×

×
=

�
!
 

"
$
#

n m n n
r r

n m

m m

0

0 0
	
� ��

where r = rank A1 6 .

We illustrate this algorithm by calculating a g-Inverse of

A =
�
��

�
��

0 2 1

0 1 1
2

which is a matrix of rank 1. A copy of the corresponding expressions is given in Appen-
dix A.

The DERIVE-function ROW_REDUCE performs the first two steps simultaneously.
Obviously, the resulting H is not of the form (5). We therefore have to use a permutation
matrix P different from I .

Finally, we compute a generalized inverse

A P
I

Z−

× ×
×

×

×
=

�
!
 

"
$
#

=
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
� −
�
��

�
��

=
�

�

�
�

�

�

�
�

3 2 3 3
1 1

3 2

2 2

0 1 0

1 0 0

0 0 1

1 0

0 0

0 0

0 1

1 2

0 0

0 1

0 0

0

0 0
	
� ��

and show that condition 1 is indeed satisfied.

Computation of the Moore-Penrose inverse

In this section we introduce an algorithm for the computation of the Moore-Penrose in-

verse A+

×n m
 of any matrix A

m n×
. This iterative algorithm, known as Greville algorithm, leads

to the unique MP inverse in a finite number of iterations.

Since the Moore-Penrose inverse A+  is also a generalized inverse of A, this algorithm
provides another method to calculate a generalized inverse A− .

We start with a simple formula to calculate the MP inverse if A a=
×n 1

 is a vector:
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a
a a

a
a a+ ′=

′ ≠
′ =

%
&
'

1 if 

if 

0

0 0
(6)

We now consider the column notation of A:

A a a a
m n

n×
= 1 2 �

and denote the submatrix, that comprises the first k columns of A, by

A a a ak
m k

k
×

= 1 2 �

Hence

A A ak k k= −1

Moreover, we define the following vectors for j ≥ 2 :

d a A A

c I A A a

b c
c c

d a
d

j j j j

j j j j

j j
j j

j j
j

′ = ′ ′

= −

′ = +
−
+ ′

′

−
+

−
+

− −
+

+
+

1 1

1 1

1

1

3 8

Note that d j
′  is a row vector, c j  a column vector (and hence c j

+  a row vector) and bj
′  a

row vector. Then we have

A A a
A A a b

b
j j j

j j j j

j

+
−

+ −
+

−
+

= =
− ′

′

�

!
 
 

"

$
#
#1

1 1 (7)

Since A a1 1=  is a matrix which has only one column, its MP inverse is easily calculated
by (6).

Using (7) we can then iteratively calculate A2
+ , A3

+ , ..., A An
+ += .

This algorithm is easily implemented on a computer with a matrix programming lan-
guage such as GAUSS. An example of a procedure for the calculation of the Moore-
Penrose inverse can be found in Schmidt/Trenkler (1998, p. 123).

However, in this paper we provide a solution in DERIVE, where for the sake of simplic-
ity we confine ourselves to matrices A

m n×
 with min ,m n1 6 ≤ 2 , i.e. vectors, and matrices

which have either only two rows or only two columns.
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The set of functions on the following page could be used as a utility file. After being
loaded, the function MPI calculates the MP inverse of the matrix passed as parameter, or
terminates with an error message if min ,m n1 6 > 2 .

We use the MPI-function to calculate the MP inverse of the matrix we already used in
the previous section to illustrate the calculation of a g-inverse. A copy of the corre-
sponding expressions, including the check showing that conditions 1 to 4 are satisfied, is
given in Appendix B. Note that conditions (3) and (4) require both A A+  and AA+  to be
symmetric.

             •                              a  ̀         ‚
MPIV(a) := IF¦a` • a = 0, 0·a`, ———————————————————————¦
             •                    ELEMENT(a` • a, 1, 1) ƒ

A1(a) := DELETE_ELEMENT(a`, 2)`

A2(a) := DELETE_ELEMENT(a`, 1)`

D2T(a2, a1plus) := a2` • a1plus` • a1plus

C2(a1, a1plus, a2) := (IDENTITY_MATRIX(DIMENSION(a1)) - a1 • a1plus) • a2

                                1 - MPIV(c2) • c2
B2T(c2, d2t, a2) := MPIV(c2) + ———————————————————·d2t
                                   1 + d2t • a2

A2PLUS(a1plus, a2, b2t) := APPEND(a1plus - a1plus • a2 • b2t, b2t)

MPI2(a) := A2PLUS(MPIV(A1(a)), A2(a), B2T(C2(A1(a), MPIV(A1(a)), A2(a)),
D2T(A2(a), MPIV(A1(a))), A2(a)))

MPI(a) := IF(MIN(DIMENSION(a), DIMENSION(a`)) > 2, "Error:  MIN(m,n) > 2",
IF(MIN(DIMENSION(a), DIMENSION(a`)) = 1, IF(DIMENSION(a`) = 1,

MPIV(a), MPIV(a`)`), IF(DIMENSION(a`) > 2, MPI2(a`)`, MPI2(a))))

Application to systems of linear equations

We consider a system of linear equations

A x b
m n n m× × ×

=
1 1

(8)

The g-inverse of A can be applied to such a system
• to check if it is consistent, i.e. to investigate if it has solutions or not, and
• if it is consistent, to provide the general solution, which may consist of either one

unique solution or an infinite number of solutions.
System (8) is consistent if and only if

AA b b− = (9)

for any generalized inverse A− .
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If Ax b=  is consistent, its general solution is given by

x A b I A A z= + −�
��

�
��

−

×

−

×n n n 1
(10)

where z∈ n  is an arbitrary vector.

Note that in applying (9) and (10), any g-inverse A−  is helpful. Therefore, we can use

the Moore-Penrose inverse A+  as well. Furthermore, since the vector z∈ n  in (10) is
arbitrary, we can choose z = 0 . Consequently, one (possibly unique) solution of Ax b=
is always given by

x A b= +

The following function could be used as a utility file. After being loaded, the function
SOLVESLE solves a system of linear equations Ax b=  where the matrix A and the
vector b have been passed as parameters, or displays a message, if a solution does not
exist.

     „ z1 †
z := ¦    ¦
     … z2 ‡

SOLVESLE(a, b) := IF(a • mpi·a • b = b,
                mpi·a • b + (IDENTITY_MATRIX(DIMENSION(a`)) - mpi·a • a) • z,
                                                "A solution does not exist!")

Finally, we analyze the consistency of three systems of linear equations, and calculate
solutions, if possible. Copies of the corresponding expressions are given in Appendix C.
We start with

A b
2 2 2 1 7

2

1 2

2 3

2

× ×
=
�
��

�
��

=
�
��

�
��

; (11)

By checking condition (9) using the MP inverse of A, we find that system (11) is consis-
tent:

AA b b+ =
�
��

�
��

=
2
7
2

Note that in this case A is a regular matrix. Hence A A+ −= 1 and AA I+ = .

The general solution is provided by (10); clearly, system (11) has a unique solution:

x A b I A A z= + − =
�
��

�
��

+ +3 8
1
1
2
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The second system of linear equations is described by

A b
2 2 2 1

1 2

2 4

2

4× ×
=

�
��

�
��

=
�
��

�
��

; (12)

When we check condition (9) we find that system (12) is also consistent:

AA b b+ =
�
��

�
��

=
2

4

Note that in this case A is a singular matrix. Hence, A−1  does not exist and AA I+ ≠ .
The general solution is provided by (10); obviously system (12) has an infinite number of
solutions:

x A b I A A z= + − =
+ −
− +

�
��

�
��

+ +3 8
2
5

4
5 1

2
5 2

4
5

2
5 1

1
5 2

z z

z z

For example, by choosing z = 0  we get the solution

x =
�
��

�
��

2
5
4
5

The third system of linear equations is described by

A b
2 2 2 1

1 2

2 4

2

3× ×
=

�
��

�
��

=
�
��

�
��

; (13)

By checking condition (9), we find that system (13) is inconsistent:

AA b b+ =
�
��

�
��

≠
8
5
16
5

i.e. a solution does not exist.
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Appendix A

     „ 0  2   1  †
     ¦           ¦
a := ¦        1  ¦
     ¦ 0  1  ——— ¦
     …        2  ‡

ROW_REDUCE(a, IDENTITY_MATRIX(DIMENSION(a)))

„        1         †
¦ 0  1  ———  0   1 ¦
¦        2         ¦
¦                  ¦
… 0  0   0   1  -2 ‡

     „        1  †
     ¦ 0  1  ——— ¦
h := ¦        2  ¦
     ¦           ¦
     … 0  0   0  ‡

     „ 0   1 †
z := ¦       ¦
     … 1  -2 ‡

     „ 0  1  0 †
     ¦         ¦
p := ¦ 1  0  0 ¦
     ¦         ¦
     … 0  0  1 ‡

h • p

„        1  †
¦ 1  0  ——— ¦
¦        2  ¦
¦           ¦
… 0  0   0  ‡

„ 1  0 †
¦      ¦
¦ 0  0 ¦
¦      ¦
… 0  0 ‡

    „ 1  0 †
    ¦      ¦
p • ¦ 0  0 ¦ • z
    ¦      ¦
    … 0  0 ‡

„ 0  0 †
¦      ¦
¦ 0  1 ¦
¦      ¦
… 0  0 ‡

    „ 0  0 †
    ¦      ¦
a • ¦ 0  1 ¦ • a

H Z

I
1 1

3 2

×

×

�
!
 

"
$
#

0

0 0
	
� ��

A−

R
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    ¦      ¦
    … 0  0 ‡

„ 0  2   1  †
¦           ¦
¦        1  ¦
¦ 0  1  ——— ¦
…        2  ‡

Appendix B

     „ 0  2   1  †
     ¦           ¦
a := ¦        1  ¦
     ¦ 0  1  ——— ¦
     …        2  ‡

MPI(a)

„   0     0  †
¦            ¦
¦   8     4  ¦
¦ ————  ———— ¦
¦  25    25  ¦
¦            ¦
¦   4     2  ¦
¦ ————  ———— ¦
…  25    25  ‡

         „   0     0  †
         ¦            ¦
         ¦   8     4  ¦
         ¦ ————  ———— ¦
aplus := ¦  25    25  ¦
         ¦            ¦
         ¦   4     2  ¦
         ¦ ————  ———— ¦
         …  25    25  ‡

a • aplus • a

„ 0  2   1  †
¦           ¦
¦        1  ¦
¦ 0  1  ——— ¦
…        2  ‡

aplus • a • aplus

„   0     0  †
¦            ¦
¦   8     4  ¦
¦ ————  ———— ¦
¦  25    25  ¦
¦            ¦
¦   4     2  ¦
¦ ————  ———— ¦
…  25    25  ‡

aplus • a

A
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„ 0   0    0  †
¦             ¦
¦     4    2  ¦
¦ 0  ———  ——— ¦
¦     5    5  ¦
¦             ¦
¦     2    1  ¦
¦ 0  ———  ——— ¦
…     5    5  ‡

a • aplus

„  4    2  †
¦ ———  ——— ¦
¦  5    5  ¦
¦          ¦
¦  2    1  ¦
¦ ———  ——— ¦
…  5    5  ‡

Appendix C

     „ 1  2 †
a := ¦      ¦
     … 2  3 ‡

     „  2  †
     ¦     ¦
b := ¦  7  ¦
     ¦ ——— ¦
     …  2  ‡

SOLVESLE(a, b)

„  1  †
¦     ¦
¦  1  ¦
¦ ——— ¦
…  2  ‡

     „ 1  2 †
a := ¦      ¦
     … 2  4 ‡

     „ 2 †
b := ¦   ¦
     … 4 ‡

SOLVESLE(a, b)

„  4·z1     2·z2     2  †
¦ —————— - —————— + ——— ¦
¦    5        5      5  ¦
¦                       ¦
¦    2·z1     z2     4  ¦
¦ - —————— + ———— + ——— ¦
…      5       5     5  ‡

„  4·0     2·0     2  †
¦ ————— - ————— + ——— ¦
¦   5       5      5  ¦
¦                     ¦
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¦    2·0     0     4  ¦
¦ - ————— + ——— + ——— ¦
…     5      5     5  ‡

„  2  †
¦ ——— ¦
¦  5  ¦
¦     ¦
¦  4  ¦
¦ ——— ¦
…  5  ‡

     „ 2 †
b := ¦   ¦
     … 3 ‡

SOLVESLE(a, b)

"A solution does not exist!"
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