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Abstract

The goals of this workshop are to illustrate how Derive may be used to compute functions of
matrices and to illustrate some of the properties and applications of matrix functions. One
particular interesting application of matrix functions is the computation of the solution of a system
of differential equations by finding the matrix exponential function.

Functions of Matrices

A simple way to envision a matrix function is by first considering a polynomial with coefficients
taken from the real numbers:
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If we replace the scalar, x, by the square matrix, A, of order n, we obtain the polynomial matrix
function
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where the identity matrix I  is required in the last term in order to preserve closure of addition since
each of the other terms of the sum is a square matrix of order n.

1. The polynomial function g(x)= 2x3 + 3x2 – 4x – 3 has a corresponding matrix function.  Our
approach in finding G(M) for the matrix M in statement #3 below is simply to substitute M into
the polynomial expression in statement #2 using DERIVE.

a. Use the Transfer-Load-Derive command sequence to enter the file exl.mth from the a:
drive.

b. Manage-Substitute the matrix in statement #3 into G(x) for x and Simplify the result.
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We need not restrict matrix functions to polynomials. In fact, we can find the matrix representation
of any function with a corresponding analytic scalar form when A is a matrix of order n with
eigenvalues  Λ = ≤λ λ λ1 2, , , |� m m n; @ , such that max | |

, , ,

λ i
i m
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An Algorithm for Computing Functions of Matrices

Our goal is to determine an algorithm which will allow us to express any matrix function f(A)
corresponding to an analytic scalar function f(x) as a finite sum which is polynomial in A.  If we
begin by assuming  f(A) has the power series expansion above and the characteristic polynomial of
A is p p p pn

n
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1 0� , and we can write all powers of A as a linear
combination of power of A which are less than n. (For example, An+1 = AAn, but An can be written
in terms of powers less than n, and after A is distributed through that sum the highest power will be
An, which can be written in terms of powers less than n. After similar terms are combined, the
highest power will be less than n.) Thus, for any matrix A, we can write
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where the coefficients r0, r1, . . . , rn-1 are to be determined.  If λ is any eigenvalue of A and x is its
corresponding eigenvector, then f(λ) is an eigenvalue of f(A); thus,
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But λ is an arbitrary eigenvalue; therefore, we can substitute in turn the n eigenvalues of A and
obtain n equations for the unknowns r0, r1, . . . , rn-1, which in turn determine f(λ).

If A has less than n distinct eigenvalues, the above approach will not yield n independent equations.
But given an analytic function f(x) and a polynomial p(x) of degree n, there exists an analytic
function q(x) and a polynomial r(x) of degree n −1 or less such that f(x)= p(x)q(x) +r(x).
Differentiating this expression we note for the multiple root αm that both p(αm)=0 and p' (αm)=0;
thus, f '(αm)= r ′(αm) . This procedure can be duplicated until we exhaust the multiplicity of the root
αm. Once we have obtained r(x) we can write f(A) = p(A)q(A)+ r(A) , and by the Cayley-Harmlton
Theorem, p(A)= 0; therefore, f(A)= r(A).

Algorithm:  Given the analytic function, f, and the square matrix A of order n with eigenvectors,
{ λ1, λ2, . . . , λn} we compute f(A) as follows:
      1. If the n eigenvalues of A are all distinct, then

a. solve the system of equations: r r r r fn i
n
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b. and set f r r r rn
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2.  Otherwise, (at least one eigenvalue is repeated).
a.  for each eigenvalue   with multiplicity m > 1, differentiate
     r x r x r x r f xn
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1 0� ( ) , m −1 times to obtain m equations

for f(λj),  f′ (λj), f″ (λj), . . . , f
 (m-1)(λj) in r0, r1, . . . , rm-1 ,

b.   supplement these equations with r r r r fn i
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for each eigenvalue of multiplicity 1 and solve the resulting system,
c. and set f r r r rn
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2. The algorithm can be used to calculate the matrix equivalent of the scalar function f x x( ) =

. (Another interesting example is: f x
x

( ) = 1
.)

a. Use the Transfer-Load-Derive command sequence to enter the file ex2.mth from the
a:drive

b. Use the EIGENVALUES command to find the three eigenvalues of M : w = 2, 4, and 9.

c. Since the eigenvalues are distinct, we will follow the outline of the first option of the
algorithm: (1) Use the Manage-Substitute command sequence to replace p, q, and r in
statement #2 with the three eigenvalues respectively. (2) Solve the system of equations
resulting from this substitution using the ROW_REDUCE commands. (3) Use the
Manage-Substitute command sequence to replace x in statement #3 with M, and a, b,
and c with the three values in the last column of the solution of the above system of
equations. (4) Our algorithm can be checked by squaring this result and noting that the
answer is equal to M .

3.  Given the matrix M in statement #1 below, we can find expressions for sin(M) and cos(M) and
show that these functions behave in a similar fashion to their corresponding scalar functions
for example, sin2 M +cos2 M = I . Our approach will be to find the matrix representation of the
function eiα = cos α + i sin α , and compute  cos(M) and sin(M) by finding the real and
imaginary parts of eiM
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a) Use the Transfer-Load-Derive command sequence to enter the file ex3.mth from the a:
    drive.

b) Use the EIGENVALUES command to find the three eigenvalues of the matrix M  in
statement #1: w = 1, −1, and 2.

c) Since the three eigenvalues are unique, we use the first option of the algorithm: Set up a
system of three equations based on ax bx c eix2 + + =  by Manage-Substituting the three
eigenvalues into the augmented matrix in statement #2 (replacing p with 1, q with −1, and
r with 2), and Simplify the result.

d) Solve the system obtained in step c) using the ROW_REDUCE command, and Simplify
the result.

e) According to the algorithm, eiM  = aM 2 +bM  +cM 0; therefore, Manage-Substitute M  for x
in statement #3 and enter the values in the last column of the result of step d) for a, b, and
c,  respectively. When this result is Simplified, we have an expression for eiM .

f) To find expressions for cos(M ) and sin(M ), compute the real and imaginary parts of eiM ,
respectively.

g) We can confirm the fact that these matrix functions behave in the same manner as their
corresponding scalar functions by validating identities. For example,

i) sin2 M  + cos2 M  = I
ii) sin 2M  = 2 sinM  cosM
iii) cos 2M  = 2 cos2 M  − I  = I  - 2 sin2 M

4. Given the coefficient matrix M  in statement #1 below we can write a linear system of`
differential equations in the form �x Mx= , where x is a vector with components dependent on a
variable t and �x  is the derivative of x (taken element by element). Since the derivative of eiM  is
MeiM  , it follows that eiM  is a solution to the matrix equation�X MX= ; hence, each column of X
is a solution to �x Mx= . Also, the dimension of the solution space of �x Mx=  where M  is an n×n
matrix, is n and the columns of X are linearly independent; therefore, the general solution of
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�x Mx=  is x u u u= + + +c c cn n1 1 2 2 � Where eiM  = U =  [u1, u2, ··· , un]. Our approach will be to
use the algorithm to find a representation for eiM , and then write the general solution to our
system of differential equations as a linear combination of the columns of the resulting matrix.

a) Use the Transfer-Load-Derive command sequence to enter the file exl.mth from the a: drive.

b) Use the EIGENVALUES command to find the single eigenvalue of M : w = -1. It follows
that (-l)t is the single eigenvalue of tM .

c) Since tM  only has one eigenvalue, the second option of the algorithm applies: Set up a
system of three equations based on ax2 + bx + c = ex  and its first two derivatives by
Manage-Substituting −t (the single eigenvalue of tM ) for p in statement #2, and Simplify
the result.

d) Solve the resulting system of equations obtained in step c) using the ROW_REDUCE
command, and Simplify the result.

e) According to the algorithm, etM  = a(tM )2 +b(tM ) + c(tM )0; therefore, Manage-Substitute tM
for x in statement #3 and enter the values in the last column of the result obtained in step d)
for a, b, and c, respectively. When this result is Simplified, we have an expression for etM .

f) If u1, u2, and u3 are the three columns of eiM , then the general solution of the system of
differential equations �x Mx=  can be written as c1u1  + c2u2 + c3u3, which can be formed by
finding etMc where c is an arbitrary constant vector.

5. Solutions for the nonhomogeneous system of differential equations � ( )x Mx G= + t  can be given
which satisfy the coefficient matrix M  in statement #3, the vector G(t) in statement #4, and the
initial condition vector n (which we want our solution to satisfy when t =0) in statement #5
below. Our approach will be to first find the general solution to the system, which can be written

in the form, p G cM M= +−Ie e t dtt t ( )4 9 , where c is an ordinary constant vector. Our algorithm

will be used  to find an expression for etM , and in turn for e−tM , as an intermediate step in
computing this expression. The particular solution satisfying the initial condition can then be
found by setting p(0) = n and solving for c.
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a. Use the Transfer-Load-Derive commands to enter the file ex5.mth from the a: drive.

b. Use the algorithm to find a representation for etM  by (1) finding the eigenvalues of M
(−1±5i ); (2) solving the system of equations in statement #6 after substituting t times the
first eigenvalue for p and t times the second eigenvalue for q; and (3) substituting into
statement #7 values for x (tM ) and a and b (the two  values in the rightmost column of the
result from solving the system of equations in statement #6).

c. Determine the general solution for this nonhomogeneous system of differential equations

by evaluatng the integral, p G cM M= +−Ie e t dtt t ( )4 9 , where c is the arbitrary vector in

statement #8.

d. Find the particular solution satisfying our initial conditions by solving p = n with t = 0)
for cl and c2, and substitute these values into the general solution p. Finally, plot [t, X1(t)]
and [t, X2(t)] for t > 0.
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6. The system of differential equations

       
�� � sin( )

� �

x x y t

y x y

= − − +
= +

2 5 3

2
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a. Use the Transfer-Load-Derive commands to enter the file ex6.mth from the a: dnve.

b. Use the algorithm to find an expression for etM : (1) Find the eigenvalues of M  (0, i, and −i).
(2) Solve the system of equations in statement #2 after substituting t times the three
eigenvalues for p, q, and r respectively. (3) Substitute into statement #3 values for x (tM )
and a, b, and c (the three respective values in the rightmost column of the result from solving
the system of equations in statement #2 and Simplify.

c. Find e−tM  by replacing t with −t in etM , and then evaluate the general solution

p G cM M= +−Ie e t dtt t ( )4 9 , where G(t) is the vector in statement #4 and c is the arbitrary

vector given in statement #9.

d. Set p = n (where n is the vector in statement #5 representing the initial conditions for the
system) and t = 0. Solve this system for cl, c2, and c3, and then substitute these values back
into the expression for p.

e. Finally, plot [t, X1(t)], [t, X2(t)], and [t, X3(t)] for t > 0, where X1(t)= x, X2(t)= �x , and X3(t)
= y, are the three components of the particular solution, respectively.

7.  The system of differential equations
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can be made into a first order system which can be solved by the techniques qf Example 3 by
first writing the system as a matrix equation.
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a.  Use the Transfer-Load-Derive commands to enter the file ex7.mth from the a: drive.

b.  Use the algorithm to find an expression for etM . (1) Find the eigenvalues of M  (−1+10i and
−1−10i). (2) Solve the system of equations in statement #2 after substituting t times the two
eigenvalues for p and q respectively. (3) Substitute into statement #3 values for x  (tM) and a
and b (the two values in the rightmost column of the result of solving the system of
equations in statement #2) and Simplify.

c.  The general solution of our system of differential equations can now be written as the linear
combinations of the columns of etM  found in b) above. To find the particular solution
corresponding to the vector in statement #7 when t = 0, multiply etM  by the arbitrary vector
in statement #6, and set the result equal to the vector in statement #7.  After setting t = 0,
solve for cl and c2 and substitute these values into the product of etM  with the vector in
statement #6.

d.  Finally, plot [t, Xl(t)] and [t, Yl(t)] for t > 0, where Xl(t) and Yl(t) are the two components
of the particular solution.

*******************************************************************************
*

Reference:        Robert J. Hill and Thomas A. Keagy,  Elementary Linear Algebra with Derive,
Chartwell-Bratt, 1995, pp 227-301 and 339-349.
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