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We dll think and reason in context. In alinear algebra class, we try to use linear equations
and homomorphisms and, when in a geometry class, lines and circles. The same student
who easily finds the exponential function as the answer to a radioactive decay problem in
acalculus class won't necessarily find it as the solution to a similarity problemin a
geometry class. Thistalk is about a unit | teach on spiral symmetry in my TopicsIn
Geometry course for secondary education majors. Spira symmetry exploits the
exponential function to analyze the geometric topic of similarity. The T1-92 is used
throughout.

We start with the notion of adilative rotation. Thisis adilation similarity (a stretching or
shrinking) centered at a point P followed by a rotation around the same point. The
amount of stretching (or shrinking) is called the

dilation number and may be negative. (Two dilative
rotations are considered the same if their dilation o
numbers are opposites and their angles differ by 180
degrees.) Suppose AABC has aright angle at C and

a perpendicular is dropped from C to the &

hypotenuse AB meeting AB at D. Thereisa +

dilative rotation centered at D that maps AACD to e e

ACBD . The angle of the transformation is +90 degrees and the dilation number is the
ratio BC/AC. Dilative rotations are sometimes called spiral symmetries and we will now
see why.

Suppose we start with a certain triangle and perform the same dilative rotation on it and
itsiterates a number of times. We get, of course, preem—mrrmerm—rr—r—rrm
a series of triangles, each rotated by the same - :
angle from the previous one and expanded (or 'w 1.2
contracted) by the same ratio. (In the figure, the ,4/_/1 A &0
ratio is 1.2 and the angle is 60 degrees. Suppose : . -

we keep track of a particular vertex of this
triangle and record its various positions as it SN N 7+
rotates around the center of the dilative rotation. MK LES AT FINC

It is clear that these points lie on a spiral of some sort. We will use the T1-92 to make this
precise.

Suppose we pick the vertex at the larger acute

angle, on the original triangle, and construct the

coordinates of it and its iterates. We arrange 968,627 1.2
these coordinates so that they separated A ASE' |
sufficiently to be selected easily. Then we put AT e -
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these data into the data base variable SY SDATA. Because of the way the selection
procedure works, it isimportant to select the x-coordinate first and to deselect both
coordinates before selecting the next pair. Now plot this data and we see the plot of
points we collected in the previous step.
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To make sense of this data, it is convenient to convert it into polar coordinates. Returning
to SYSDATA, we label the first two columns,

XCOORD and YCOORD. We |label the next w2 |P1ot Setup|call I-!eral'der* calcubilshat
two columns RADIUS and ANGLE and define | oyl arale |

C3to be SQRT(C1/2+C272). If weweretouse |3 [F=—fEiaaii=

the built-in inverse tangent function, wewould |3 |5ed el 00d

get valuesin the range -TV2 to TVZ,_Whlch isnot |57 RS
what we want. But it is easy to define acustom |7 L6220 -1.877]1. 2447]
Arctan function usi ng the built-in ANGLE ﬁn%«l_l([:i znnncnﬁu 22 FIINE

function. Using this function and adding 2rt, "by hand”, to account for the winding nature
of the data, we get it in usable form.
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Next, we plot the radius against the angle. Make sure that the calculator isin FUNCTION
mode and that angles are measured in r_adi ans, [ o e T
not degrees. Because of the way the points ot
were constructed, we know that their second
coordinates are increasing by a constant ratio
for every regular change in the angle. (In the +
example, the modulus of the point is +
increasing by 1.2 for every 60° change in the
angle.) Thistype of function isusually called
exponential growth.
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We can check our guess that thisis an exponential function by doing an exponential
regression on the data. We can view the resulting exponential function (the regression
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function) in both FUNCTION mode, in order to see the usua graph, or in POLAR form,
to see the resulting spiral fit to the original data.
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We can derive the equation of the spiral easily. First note that, if A and p denote the

constant angle and dilation number, respectively, then the coordinate (r,8) transforms, via

the dilative rotation, to (r-, 6 + A). Since the dilative rotation is a symmetry of the curve,

r@+A)=puI@®). Setting® =0, A, 2, ..., weget r(n[A) =" [¥(0) . Let a denote r(0)
[¢]

and © =nA . Then r(6) =au” . The simplest assumption to make now is to assume that 6

can take on any value. This then becomes the equation of our "self similar” curve. (In the
30

example, r(®) =0.5(1.2) ™ .)

Let D(p,¢) denote the dilative rotation centered at the origin with dilation number p and
rotation angle §.

[¢]
Theorem: The spiral r(0) =au? hasD(p,&) asasymmetry if and only if Ing\_u) = Inép) :
[¢]
Proof: D(p,&) isasymmetry of the curve r(0) =au* if and only if r(8 + &) = plr(0).
0+¢ o u
Thisisequivalentto au * =p(au?). Dividing both sidesby au* and taking
logarithms yields the result.

Corollary: The above spiral can also bewrittenas r(8) = au0° , Where |, denotes the
dilation number required to stay on the spira through arotation of one radian.

Proof: Just take & = 1, in the theorem.

The number 1, is called the natural dilation number of the spiral. If p, > 1, the spira
winds out counter-clockwise and if O <p, <1, then the spiral winds out clockwise.
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We can also express the spiral in terms of the base e: r(0) = ae®"*’ . The quantity
In(K,) has ageometric interpretation.

Theorem: The equation of the spiral can be written in the form r (@) = ae” ™ , where
@ =cot™*(In(l,)) isthe angle between the radius vector to a point on the spiral and the
tangent vector to the spiral at the same point.
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Note, in particular, that the angle @ is a constant, and is not dependent on 6. Logarithmic
spiras are also called equiangular spirals because of this property. Note also that we can
assume that @isafirst or second quadrant angle, depending on whether the spiral winds
out counter-clockwise or clockwise. @

Proof: Let O denote the origin and P apoint on

the spiral r(@) = au,’ with (polar) coordinates -
(r,0). Increment the angle 6 by a small amount et
00 and let Q be the intersection of the tangent mORP=4-58
line at P and the augmented radius vector (see

figure.) Let R be the foot of the perpendicular
from P to the line OQ. i reani H

Then OP = r, mOQPS= ¢, RQ = dr, and mJOQP = ¢- 06 . Let n = mJOQP. Then RP
= r[8in(d0). Since Sin(d0) = &0, when &0 is small, cot(n) = RQ/RP = r?S_; when 00 is

small.
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Taking the limit on both sides of cot(¢- 808) = g—; , 8S 00 goes to zero, yields

_ladr

cot(®) Py =1n(K,) -

Next, we will use the calculator to study the derivative spiral. We start by defining
r1®) = (0.5)(.8)° and graphing it, in polar mode, using a square window.
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Now, on the home screen, define xt1(t) = r1(t) cos(t) and ytl(t) =ri(t)sin(t) . Graph these
eguations in parametric mode, again with a square screen.
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Now return to the home screen and define B 1o g e
d d + f—|Zoon|Trace [ReGraph|Math |Draw|-
xt2(t) = s (xt1(t)) and yt2(t) = s (Yti(t)) . Now

graph both the spiral and its derivative. (The graphing ( (
will go faster if you obtain explicit formulas for the )

right hand sides of these expressions before defining
the left hand sides.) If you graph these in
simultaneous mode with their styles set to PATH, you
will see an interesting relationship between these two curves.
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Now return to the home screen and simplify the expressions for the derivatives. If you
factor and then tCollect each expression, you should get

%(xtl(t)) = -0.5122...(8)" sin(t +0.2195...)
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%(ytl(t)) = +0.5122...(8)" sin(t +1.7903...).

Who are these strange numbers and what do they want? First of all, note that
% +(t+0.2195...) =t +1.7908..., so that the equations can be written

%(xtl(t)) =-0.5122...(.8)" cos(t +1.7903...)

%(ytl(t)) = +0.5122...(.8)" sin(t +1.7903...)

which isalittle better. Next note that cot(1.7903...) =In(.8) , so that 1.7903 is the
constant angle @.

To get better control over this, we return to some theory. Since the spiral has the
eguations:

X(t) = ay, cos(t)

y(t) = ay, sin(t)
the derivatives will have the form:

X'(t) = a(ln(p, ) cos(t) —sin(t)) K, = In(pg)X(t) = y(t)
y'(t) = a(cos(t) + In(H,) Sin(t))p, = X(t) + (o) y(t) -

In matrix form, these equations become:

X(OO_On(,) -1 OX(HO
JoH H 1 inu)HBor

Factoring out the square root of the determinant (why not?) yields:

On(k,) -1 0

XOO_pE b D HxM®O ) .
BP0 T int Fl e D= ).
0 D D 0O

The matrix is now in the form of arotation matrix, the rotation being by an angle 6,
In(L)
D

where sin(8, ) = %and cos®,) = It follows that cot@®,) = In(i,), S0 that

8, =@, the constant angle for the spiral. Note that, in thisform, 8, isafirst or second
quadrant angle depending on whether p, =21 or p, <1.
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So, we have shown that the derivative curve is a dilative rotation of the original spiral.

The dilation number is D = {/1+In?(,) = csc(@) and the angleis @, where @ denotes

the constant angle for the original spiral. We can check this against our example above.
In our case, r1(®) = (0.5)(.8)°, sothat p, is.8. Hence, In(,) =-.2231... and D =

1.0245.... Hence 6, is a second quadrant angle and is given by
m-sin™ (%) =1.79034.... This checks with the above. The product of D and a is
(:5)(1.0245...) =0.5122..., which aso checks.

It is not hard to see that the curve (X'(t), y'(t)) is also alogarithmic spiral, since:
X'(t) = Da(cos(t) cos(®,) —sin(t)sin(@,))u, = Dr(t)cos(t +8,) = Duo_ef’r(t +0,)cos(t +6,)
y'(t) = Da(cos(t) in@®,) +sin(t) cos(8, )M, = Dr(t)sin(t +8,,) = Dy, r (t +8,)sin(t +6,)

Hence, the point (X'(t), y'(t)) lieson the curve r(0) = (Duo*’f’a)uot, aspira parald (i.e.,
having the same natural base) to the original spiral.

We have seen, in the above, that the derivative of alogarithmic spiral is another
logrithmic spiral and is adilation of the original spiral. It is not hard to show that any
dilation of alogarithmic spiral is another logarithmic spiral. In fact, the same is true of
any rotated logrithmic spiral.

Theorem: Let C be the graph of the logarithmic spiral r(®) = au'. Then both

D(v,0)(C) and D(1,A)(C) are graphs of logarithmic spirals and they are the same graph if

v=p.

Proof: Suppose (r,8) maps to the point (r',8") viathe dilation D(v,0). Then

DE,0)(r'8) = (r,8) = (au® ) . Hence, =r' = au . Since 8 = 8!, the dilated spiral has
v Vv

equation r(®') = (av)u® , which isaspira paralle to the origina spiral.

Suppose, on the other hand that (r,8) mapsto (r',6") viatherotation D(1,A). Thenr' =r

andB8'=8+A.Sincer®)=au' onC, r'=apu®™* =(au™)u?. That is, the image of

D(1,A\)(C) of C has polar equation r(®) = (ap ™ )u® , which again isa spiral paralle to
the original spiral.

Equating the two expressions for the radius vector, yieldstheresultv = pu™ .
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In particular then, the above theorem says that dilating the spiral r(8) = au' by afactor

i~ has the same effect as rotating the spiral by A. This can be illustrated on the

calculator. Change to polar graphing mode and set a small square window with a
symmetric 6 range. Then type in the following program:

rotspirl()

Prgm

Local i

Fori,1,6,1
Omin-(i-1)* W3- Bmin
Bmax-(i-1) )*1v3 - Bmax
0.5%(0.8)( 6+(1-1) )*1v3) - r1(6)
DispG

StoPic #("spir' &string(i))
EndFor

EndPrgm

This program creates and stores six pictures (.PIC) files each of which requires 3097
bytes for atotal of 18582 bytes of memory. If you don't have that available, either delete
some unneccessary files or increase the increment angle (which is 173 in the program)
and make fewer pictures.

The picures will be stored as SPIR1.PIC, SPIR2.PIC, ... , SPIR6.PIC. You can view the
pictures using the VAR-LINK viewing function or by opening them in the graph screen.
The following picture shows all six spirals:
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To see even more vividly the equiva ence between dilations and rotations of this spiral,
write the command CYCLEPIC "SPIR", 6, .1, 10, -1. The resulting animation seems to
be of aspira dilating in and out, even though it was written as a rotating spiral.
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