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Summary

The aim of the workshop is to illustrate some of the latest achievements in the nonlinear dynamics at
the popular level in DERIVE. The new physical result for nonlinear, nonstationary systems is
presented - the structure of attraction basins in period doubling bifurcation systems with varying
control parameter.

1. Main Notions of Nonlinear Dynamics

The logistic map defines the simplest nonlinear difference equation
xn+1 = r xn (1-xn), n=1,…,N,

where xn is the value under consideration, so-called iterative value. This equation is nonlinear and its
solution has a very interesting behavior for some values of the control parameter r.  We will see that
if r is equal to 3.56 the equation results in chaotic solution. Theoretical foundations of the problems
are analyzed in detail in papers [1-5], which contain a voluminous bibliography.

If the solution of the logistic map does not change with iterations, then we say that the system is in a
stationary state. Fixed point is the value of x such as xn= xn+1= x*.  In this case the limit of x is called
an attractor . The periodical solution with period 2 (2 consequently changing constant values xn and
xn-1 is called an attractor of period two for the logistic map. This name attractor is obvious, because
any sequence started from [0,1] will reach these two values by definition.

It may be demonstrated using this program:
" Main Notions of Nonlinear Dynamics"
"Shortcut"
D(v):=DIMENSION(v)
"Logistic equation iterations"
LOGIST(l,x0,n):=ITERATES(l*x*(1-x),x,x0,n)
"One line"
ATR_AUX(x1,x2):=[[x1,x2],[x2,x2]]
"Append lines"
ATTRACTOR_AUX(m):=APPEND(VECTOR(ATR_AUX(element(m,i),element(m,i+1)),i,
D(m)-1))
"Attractor Path matrix"
ATTRACTOR(r,x0,n):=[x,r*x*(1-x),ATTRACTOR_AUX(LOGIST(r,x0,n))]
"Only in Approximate mode"
Precision:=Approximate

Exercise 1.
•  Plot logistic map for stationary (r=2.5) case.
• Approximate function ATTRACTOR(r,x0,n) for r=2.5, x0=0.04, n=10.
• Plot the result in Beside 2D window. Centered at x=0.5, y=0.5 using Scale x=0.25 y=0.25.
• Increase number of iterations and plot the result until no plot change.
• Try other start points.

 Result: All iterations attract to 1 point x*=xn=xn+1=1-1/r. (Fig.1, a)
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 Exercise 2.

 •   Plot logistic map for orbit of period 2 (r=3.2).
• Approximate function ATTRACTOR(r,x0,n) for r=3.2, x0=0.04, n=50.
• Switch to 2D window, Delete All previous plots & Plot the highlighted one.
• Increase number of iterations and plot the result until no plot change.
• Try other start points.

 Result: Double period Bifurcation. 2 stable states instead of one. (Fig.1, b)
 
 Exercise 3.
        •   Plot logistic map for orbit of period 4 (r=3.5).

• Approximate function ATTRACTOR(r,x0,n) for r=3.5, x0=0.04, n=50.
• Switch to 2D window, Delete All previous plots & Plot the highlighted one
• Increase number of iterations and plot the result until no plot change.
• Try other start points.

 Result: Orbit of period 4.  4 stable states instead of 2. (Fig.1, c)
 
 Exercise 4.
        •   Plot logistic map for orbit of period 4 (r=4). (Fig.1, d)

• Approximate function ATTRACTOR(r,x0,n ) for r=4, ,x0=0.04, n=50.
• Switch to 2D window, Delete All previous plots & Plot the highlighted one
• Increase number of iterations and plot the result until no plot change.
• Try other start points.

 Result: Chaos. (Fig.1, d)

 
 2. The model of a dynamic system with variable control parameter

 
 The nonlinear system acquires new stable equilibrium states in bifurcation points. We consider the
situation, in which two equivalent final states arise in the system, that is, states which have identical
energies, but are different in some non-energetic aspect. It can be phase (period-doubling
bifurcations in logistic map) or polarization (polarization states in nonlinear optics). If we plot all
limiting values of x as a function of the control parameter r, we will get the bifurcation diagram.
 
 In real system the control parameter r is not constant, r is changed due to some reason. Hence it is
important to model such system: a system with parameter r which is changed at slow rate. Let us use
the same logistic map but with minor modification:
 xn+1 = r n xn (1- xn),
 rn+1= r n+ s,

 
 a) Stable point:
xn=xn+1

 b) Orbit of period 2
xn=xn+2

 c) Orbit of period 4
xn=xn+4

 d) Chaos

 Fig. 1. Attractors in the logistic map.

 r =2.5  r =3.2  r =3.5  r =4
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 rn  will be changed for each iteration. The rate of growth or decay of the control parameter r is value
“s”. We will consider only such systems in which rate s is much smaller then control parameter r:
s<<r .
 
 Let us plot the bifurcation diagram in case  r is changed. There is no need to calculate 100 iterations
at each value of parameter r. We can simply plot the current value x as a function of variable control
parameter r, because r is changed at each step. If control parameter is changed, there is a new
phenomenon: some delay in bifurcation. Control parameter goes through bifurcation point, but
solution continues to be in an unstable state. Only after some time (or after a few iterations) the
system arrives at a new stable state. The similar phenomenon is observed during the reverse process
when the control parameter is decreased. If we compare results obtained for the increasing and
decreasing of control parameter through bifurcation point, we will observe a hysteresys in the
behavior of the system under consideration.
 
 The calculations we have made were performed with precision up to 6 digits. Our software DERIVE
permits to do calculation with much better precision, for example 40 digits. In our study the
numerical errors are of a paramount importance. In some paper the similar calculations are made
with accuracy up to 80 digits. Let us do a few test calculations, which will demonstrate the
importance of a different precision.
 
 It may be demonstrated using this program:

 "Dynamic Bifurcations""Shortcut"D(v):=DIMENSION(v)
 "Logistic Map. r -control parameter, x0 -initial value, n iterations"
 LOGIST(r,x0,n):=ITERATES(r*x*(1-x),x,x0,n)
 "Logistic Map with Sweep Parameter. dr - parameter rate"
 LOGIST_D(r,x0,n,dr):=ITERATES([u SUB 1+dr,(u SUB 1+dr)*u SUB 2*(1-u SUB
2)],u,[r,x0],n)
 "Logisic Map with Sweep Parameter & Initial value = Stationary one"
 L_D(r,n,dr):=LOGIST_D(r,1-1/r,n,dr)
 "Matrix: 1st column - vector of scalar r, 2nd column - vector v."
 H2(v,r):=VECTOR([r,v SUB i],i,DIMENSION(v))
 "m last elements of vector v"
 H(v,m):=VECTOR(v SUB (D(v)-i_),i_,0,m-1)
 "Makes n iteration for x0 & r, returns m last values."
 H1(r,x0,n,m):=H2(H(LOGIST(r,x0,n),m),r)
 "Bifurcation Diagram. Parameter range [r1,r2] step dr"
 "x0- Initial Point. n - number of iterations. m - number of last values."
 W(r1,r2,dr,x0,n,m):=APPEND(VECTOR(H1(r,x0,n,m),r,r1,r2,dr))
 "Use only Approximate Mode"
 Precision:=Approximate

 After loading your program you have to specify some settings:
 
 Exercise 5. Bifurcation Diagram.

• Approximate function W(r1,r2,dr,x0,n,m) for r1=2.8, r2=3.8, dr=0.01, x0=0.1, n=100, m=4.
• Plot the result in Beside 2D window Centered at x=3.5, y=0.5.
• Increase the number of iterations to 500. Approximate and Plot once more. (Fig. 2, 1)
• Switch to Algebra window. Remove the result to free the memory.

 
 Exercise 6. Hysteresis and Dynamic Bifurcation Diagram

• Approximate function L_D(r,n,dr) for r=2.8, n=300, dr=0.004. Plot the result.



Proceed ngs of the Th rd  Internat onal  DERIVE/TI -92 Conference

Surovyatkina: Chaos Investigations with DERIVE Page 4

• Reverse parameter change direction. Approximate function L_D(r,n,dr) for r=3.8, n=300,
dr=-0.004. Plot the result. (Fig. 2, 2)

• Switch to Algebra window. Remove the result to free memory.
 
 Exercise 7. Rate Dependence

• Change rate dr and number of iterations n to 0.002 & 250 respectively. Approximate L_D()
and Plot the result.

• Try other dr & n. Compare Hysteresis loops size.
 Exercise 8. Noise Effect

• Repeat the above exercise using increased precision (20 digits). Note the curve shift.
•  Result: Increased precision results in less round off errors and qualitatively changes the

result: the curve stops shifting with rate decrease.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. Bifurcation diagram of the logistic map: 1 -. bifurcation diagram for xn+1 = r xn (1-xn), 2 -
hysteresis in dynamic bifurcations for xn+1=r nxn(1-xn).
 
 3. The Basins of Attraction for Final Steady States

 
 The bifurcation diagram of the logistic mapping for a variation of r within the interval from r1=2.8 to
r2=3.8 shown in Fig. 2 (1). The fist period-doubling bifurcation occurs at the critical value
r=r c1=3.0. For r>rc1  the initial branch x*(r) becomes unstable, and the system enters one of the two
possible stationary states x  or x .The quantity x* serves as the unstable point of this mapping. For

x> x*, the system arrives at the state x  and for x>x* and for x< x* at the state x . A determination of

the attraction zones of the states x  and x  constitutes the subject of our investigation in this paper.
 

 Let us consider what final steady states x  or x  arise in the system after bifurcation if the control
parameter is changed at rate S=dr/dn (n is the iteration number) and initial value is equal to x0. We
plot x  in black and x  in white in axes x0 - S. The consideration is made for different noise level in
the system. Numerical modeling reveals several quite unexpected phenomena.
 

 First of all, every final steady states x  or x  has its own basin of attraction on the axes of initial value
x0. These basins have a complicated structure.
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 The second result is that in the presence of noise the boundaries of the attraction basins become
fuzzy, so that strong noise equalizes the probabilities of arriving at the final steady states.It may be
demonstrated using this program:
 

 Precision:=Approximate
 N(s):=FLOOR((3.2-2.8)/s)+1
 FINAL(x0,s):=ELEMENT(ITERATE([r*x*(1-x),r+s],[x,r],[x0,2.8],N(s)),1)
 REC(x0,s):=IF(FINAL(x0,s)>0.6875,[x0,s])
 step_x0:=0.025
 LINE(s):=VECTOR(REC(x0,s),x0,step_x0,1-step_x0,step_x0)

             STRIP(beg_s,fin_s,step_s):=APPEND(VECTOR(LINE(s),s,beg_s,fin_s,step_s))
 
 After loading your program you have to specify some settings:
 Exercise 9. Plot the Basins of Attraction of Final Steady States

• Approximate function STRIP(beg_s,fin_s,step_s) for beg_s=0.01,fin_s=1,step_s=0.03.
•  Plot the result in Beside 2D window ,Scale: 0.5, 1; Axes: 7, 7; Center : x=1, y=1
• Delete All previous plot. Switch to Algebra window. Remove the result to free the memory.
• Approximate function STRIPE(beg_s,fin_s,step_s) for small rates s: beg_s=0.016,

fin_s=0.029, step_s=0.0005.
• Plot the result in Beside 2D window , Scale: 0.5, 0.015; Axes: 5, 7; Center : x=1, y=0.015

Result: Attraction basins of the first, x  and of the second, x  steady states in period doubling
bifurcation systems are plotted.

Fig. 5. Division of the “initial coordinate
– rate” plane into attraction regions of the
states x  (black cells) and x  (white cells).

Fig. 6 Fine structure of attraction regions of the
states x  (black cells) and x  (white cells for
small rates s.

4. Conclusion

 We have shown, that DERIVE can be successively applied to the numerical modeling of
complicated nonlinear systems. DERIVE is a very prospective tool for student scientific research.
High precision of calculations supported by DERIVE provide unique opportunity for the
investigation of chaos in nonlinear systems.
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